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EXECUTIVE SUMMARY

Runway incursions are used to identify pre-collision behavior. Understanding those factors that increase
the severity of a runway incursion may help identify situations that are more dangerous and potentially
mitigate  that  danger.  A  runway  incursion  is  defined  as  the  unauthorized  presence  of  a  vehicle,
pedestrian  or  aircraft  on  a  runway.  Runway  incursions  are  rated  according  to  severity:  category  D
represents  the least  severe  incidents  (generally  one aircraft)  while  category  A  represents  the most
severe (up to and including a collision).  Incidents are also identified by who is “responsible” for the
incursion: a controller, a pilot, or a vehicle.

The purpose of this research is to examine the underlying factors that contribute to the severity of
runway incursions. The research detailed in this report does not seek to explain the causes of particular
events,  but  rather  focuses  on  broader  trends in  incursion  severity.  Understanding  those  broader
patterns can provide insight into policy-making and identify areas for future research.

Prior  to  examining  any  data,  a  literature  review was  undertaken to  identify  hypotheses  potentially
relevant  explanatory  variables.  However,  little  quantitative  research  has  been  done  on  runway
incursions. Much of the research that has been done has been qualitative in nature. Some identified
trends, but generally focus on individual events rather than broad factors that may influence severity.
Thus, to the best knowledge of the authors, the research in this report is the first systematic statistical
analysis of runway incursions.

The analysis focused on the set of all runway incursions that occurred from 2001 to 2010. The FAA
curated this dataset, which contains basic information about the incursion and related aircraft. One of
the Volpe Center’s innovations was to combine multiple FAA and non-FAA data sources to incorporate
information not available in the base dataset. These additional sources included the FAA’s Air Traffic
Quality Assurance (ATQA) database and Operational Network (OPSNET) database, while weather and
information on airport layout were gathered from other parties.

A variety of statistical techniques were also used to examine the dataset. Due to the lack of previous
research,  much  of  the  effort  focused  on  cross  tabulations  of  the  data.  This  technique  revealed
interesting relationships among the variables both in terms of incident severity and incident type. A
preliminary  modeling  effort  was  also  undertaken.  Some  of  the  major  conclusions  drawn  from  the
research are:

 Controller incidents are approximately three times more likely to be severe than other incident
types.

 Incident type and severity distributions statistically significantly vary by region, indicating policy
impacts will also vary by region.

 Evidence suggests controller age does not impact severity.

 Commercial carriers are 60% less likely to be involved in severe conflict incursions but are more
likely to be involved in conflict incursions overall.
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 Additional  runway  intersections  increase  the  likelihood  of  a  severe  event,  but  more  total
runways decreases the likelihood of a severe event.

 Incidents during takeoff are 2.5 times more likely to be severe when compared with taxiing.
Incidents during landing are 1.7 times as likely to be severe when compared with taxiing.

In addition to identifying factors that contribute to severity, this  research effort  identified areas for
future  research.  Some of  the research that could  contribute most  to  an understanding of  the risks
related to runway incursions are:

 Estimating  models  of  incursion frequency (rather  than severity)  to shed light on how other
variables impact safety. 

 Investigating the nature of the ordering (if any) of severity between C and D events.

 Understanding the relationship between incident type (OE/PD/VPD) and severity.

 Examining why LAHSO operations appear to have fewer than expected incursions despite being
a riskier operation.

 Refining and clarifying traffic complexity measures.

 Investigating the relationship between time on shift and frequency of incursions.

 Disentangling the effects of various visibility-related measurements (i.e., visibility, ceiling, cloud
coverage).
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AC/AT Air Carrier / Air Transport

AIP Airport Improvement Program
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ASDE Airport Surface Detection Equipment

ASDE-3 Airport Surface Detection Equipment, Version 3

ASDE-X (and ASDEX) Airport Surface Detection Equipment, Model X

ASRA Aviation System Reporting System

ATC Air Traffic Control

ATQA Air Traffic Quality Assurance

ETMSC Enhanced Traffic Management System Counts

FAROS Final Approach Occupancy Signal

GA General Aviation

ICAO International Civil Aviation Organization

IIA Independence of Irrelevant Alternatives

LAHSO Land and Hold Short Operation

METAR
From the French Mètéorologique Aviation Régulière. Hourly weather reports
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OE Operator Error

OEP Operational Evolution Partnership

OLS Ordinary Least Squares

OPSNET Operations Network Database

PD Pilot Deviation
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1. INTRODUCTION

The focus of this research is to examine the underlying factors that contribute to the severity of runway
incursions. A runway incursion is an event in which a person, vehicle,  or aircraft enters the runway
safety  area  without  authorization.  From  the  perspective  of  the  FAA,  runway  incursions  represent
dangerous pre-collision behavior. In accordance with standards established by the International Civil
Aviation Organization (ICAO), runway incursions are ranked according to their severity, with category D
being the least dangerous and category A being a narrowly avoided collision. 1 As it  is believed that
reducing  the  severity  of  incursions  reduces  the  likelihood  of  having  a  collision,  it  is  important  to
understand those factors that influence incursion severity.

Previous research has focused on qualitative examinations of incursion reports. Case studies were used
to understand some trends and identify common causes. The research detailed in this report does not
seek  to  explain  the  causes  of  particular  events,  but  rather  focuses  on  broader  trends  in  incursion
severity.  Understanding those patterns can provide insight into policy-making and identify areas for
future research.

1.1.Background

Runway incursions are classified in two main ways. Severity is ranked from category D to category A. In
addition to that ranking is a classification of who was at fault for the incident: controller at fault, called
operational errors (OEs); pilot at fault, called pilot deviations (PDs); and vehicle or pedestrian at fault,
called vehicle or pedestrian deviations (V/PD).  In fiscal  year 2008, FAA adopted a new definition of
runway  incursions,  conforming  to  ICAO  standards.2 When  compared  to  previous  years,  the  new
definition produces more runway incursions,  even with no change in underlying behavior or safety.
Thus, any comparison with previous years needs to be done so in the light of the changing definitions.
However, this definitional change does not reclassify any severe incursions (class A or B). Below is an
overview of recent incursion trends to provide context for the research that follows.

Fiscal Year 2008

During FY 2008, there were 1,009 runway incursions.3 Twenty-five of those incursions were classified as
severe  (category  A  or  B),  resulting  in  a  rate  of  approximately  0.43  severe  incursions  per  million
operations (takeoff or landing). The overall rate of runway incursions was 17.2 incursions per million
operations.

1 The FAA also ranks collisions as Category A events. This practice deviates from the ICAO standard, which does not
consider collision events as Category A events.

2 Please see Appendix A: Runway Incursion Definition for a complete definition including severity classifications.
Note that the appendix uses the new definition of a runway incursion.

3Federal Aviation Administration (2010).



Fiscal Year 2009

During FY2009, there were 951 runway incursions.4 Of those incursions, 12 were categorized as severe,
representing a rate of 0.23 severe incidents per million operations. The overall rate of runway incursions
was 18 incursions per million operations.

Fiscal Year 2010

There were 966 incursions during fiscal year 2010, representing a rate of approximately 18.9 incursions
per million operations.5 Of  those,  6 were categorized as  severe,  representing a  rate of  0.12 severe
incidents per million operations.6

Fiscal Year 2011

There were 954 incursions during fiscal year 2011, representing a rate of approximately 18.8 incursions
per  million  operations.  Of  those,  7  were categorized  as  severe,  representing  a  rate  of  0.14 severe
incidents per million operations.

Runway Incursion Trends

Compared to the previous year, FY2010 saw an increase in both the number of incursions and the rate
of runway incursions. However, the number of incursions in FY2010 is still below the FY2008 total of
1009 incursions. The incursion rate has increased in general from 2008 (a rate of 17.2 incursions per
million operations) to 18.9 incursions per million operations in FY2010. FY2011 saw the rate remain
almost constant, though there was a slight drop in total number of incursions.

FY2010  saw  a  continued  decrease  in  the  overall  number  of  severe  incursions.  The  rate  of  severe
incursions  has  also declined.  This  is  contrary  to  the trend in  the overall  rate  and count  of  runway
incursions. FY2011 saw an increase in both the rate and total number of severe incursions. However,
both were very slight and likely not representative of an increasing trend.

FAA Response to Runway Incursions

FAA has recently placed a renewed focus on runway safety, starting with a Call to Action in August 2007.
A plan “focused on changes in cockpit procedures, airport signage and markings, air traffic procedures,
and technology” was developed.7 Further deployment of systems such as ASDE-3/AMASS and ASDE-X
will increase controller awareness of movement areas. FAA has also begun deployment of runway status
lights at 23 airports. The new light system “gives pilots a visible warning when runways are not safe to

4 Ibid.

5 Ibid.

6 For FY2010 and FY2011, incursion statistics are taken from  http://asias.faa.gov while operations statistics are
taken from the OPSNET database. The statistics from that database are current as of 8/1/2012.

7 Federal Aviation Administration (2008).

http://asias.faa.gov/


enter, cross, or depart on”.8 The first lights are already online with the full set expected to be in service
by 2016.9 Yet  another effort  to  reduce runway incursions  is  the deployment of  the Final  Approach
Occupancy Signal (FAROS) system. The FAROS system “activates a flashing light visible to aircraft on
approach as a warning to pilots when a runway is occupied and hazardous for landing” – essentially the
arrival counterpart to runway status lights.10

These  interventions  by  FAA are  an  attempt to  control  some of  the  causes  and impacts  of  runway
incursions. FAROS and runway status lights are designed to give pilots more information so that they can
avoid a runway incursion (by performing a go around or stopping at the hold short line, for example).
The ground surveillance technologies (ASDE-3/AMASS and ASDE-X) help improve situational awareness
for  controllers  and  provide  controllers  with  early  warnings  of  potential  collisions.  Both  are  human
factors improvements meant to mitigate runway incursion risk.

1.2.Method of Investigation

The goal of this research was to use statistical methods to identify trends in runway incursion severity.
The basis  of  this  research was the set  of  all  incursions that occurred between January 1,  2001 and
September  30,  2010.  During  this  time  period,  there  were  approximately  8,800  incursions.  The
methodology focused on analyzing these 8,800 incursions and detecting patterns in airport, aircraft,
controller, and pilot characteristics. Additional information on weather was included where feasible.

The analysis was effectively split into two parts. The first part was focused on one-way and two-way
descriptive statistics and analyzing cross tabulations of variables. As much of the information describing
the incursion was categorical in nature, this provided an effective means of analyzing these variables.
Additionally,  this allowed a wider array of  variables to be tested.  These results focus on comparing
variables pairwise, so are less able to account for interactions.

To  counteract  some  of  the  limitations  of  the  cross  tabulation  approach,  a  modeling  effort  was
undertaken.  This  allowed  multiple  variables  to  be  included  at  once  and  their  interactions  to  be
understood. However, as this was a more time-intensive process, the sample had to be limited. It was
decided to focus on controller incursions. Thus, the cross tabulations examine many more variables
across and broader array of incursion types while the modeling effort attempts to delve deeper into the
relationship  between these  variables  and severity  within  a  limited sample.  Again,  due  to  time and
resource constraints, these models should be considered  preliminary only; a more intensive modeling
exercise would provide significant improvements to the understanding of runway incursion severity.

The modeling effort focused on discrete choice models. Due to the apparently ordered nature of the
rankings,  an  ordered  logit  model  was  presumed  to  be  the  appropriate  model.  Evidence  suggests,

8 Government Accountability Office (2008).

9 Federal Aviation Administration (2011).

10 Ibid.



however, that the assumptions of the ordered model did not hold. Therefore, multinomial logit models
were employed to capture a more nuanced look at the impacts on severity.

1.3.Overview of the Document

This document is divided into three major sections followed by conclusions and appendices. The first
section presents the results of a review of previous runway incursion literature as well as discrete choice
modeling. The second section presents descriptive statistics and the results of the cross tabulations. This
addresses some of the basic distributions of the data, serves as an introduction to the data involved in
the modeling, and presents some basic results. The third section details the modeling effort, including
the supporting methodology. These results supplement those seen in the second section and form the
basis for any conclusions drawn.

Following the main body of the paper are a series of appendices. Appendix A addresses the definition of
a runway incursion. Appendix B addresses additional data issues discovered during the research process.
Appendix C provides additional detail on the statistical methodologies used in this report. Appendix D
contains a list of identified future research needs.



2. LITERATURE REVIEW

The research reviewed in this section falls  into two major categories.  The first set of papers covers
previous research on runway incursions. Understanding severity was not the main goal of these papers;
rather, they focused on understanding the causes behind runway incursions. This first set of research
papers  provided insights  into what  variables  or  concepts  might  play  a  role  in  determining  incident
severity. These suggested variables can be further divided into policy variables – which can be directly
affected to produce a change – and control variables – which are not directly affected by policy, but still
play a role.

The second set of papers focus on discrete choice modeling. While not necessarily in the context of
runway incursions, or even aviation, this research demonstrates relevant methodology. Section 4.1 of
this paper, on methodology, was heavily influenced by these papers.

It is apparent from this literature review that a rigorous econometric model of runway incursion severity
has not been previously developed. The previous research on runway incursions has been focused on
the human factors elements that can cause runway incursions. There is also a wealth of information on
modeling injury severity, mostly from the highway community. The combination of these two research
traditions guided the development of a model of runway incursion severity.

2.1.Previous Runway Incursion Research

Previous research on runway incursion causes been mostly conducted in the human factors arena and
divides  the  research  into  three  areas:  pilots,  controllers,  and  other  airport  personnel.  The  papers
outlined below represent the culmination of an extensive research process. The review began with some
known sources and a broad search for literature related to the causes and severity of runway incursions.
These  sources  provided  additional  citations  that  proved  to  be  of  interest  to  the  review  process.
Ultimately, however, few papers focus specifically on the causes and severity of runway incursions. The
following summary attempts to provide a fair representation of the state of the practice.

Cardosi and Yost produced an extensive literature review on the subject of human factors in runway
incursions.11 A summary of their findings is presented here.12 

Cardosi  and  Yost  note  that  a  common  theme  among  the  papers  they  reviewed  was
miscommunication  or  failure  to  coordinate  between  two  controllers.  In  addition  to  that
common theme, other factors such as losing track of an aircraft or forgetting its position were
also cited as contributing to runway incursions.  Another study (Kelly  and Steinbacher 1993)
focused on frequency congestion and found that many incidents were associated with blocked
transmissions  or  incomplete  messages.  Lastly,  Skaliotis  (1991)  found  that  the  “number  of
incursions was not well correlated with the number of operations. It suggested that local factors

11 Cardosi and Yost (2001).

12 In addition to the literature review, Cardosi and Yost examined safety data. This analysis of both pilots and
controllers and will be discussed in the relevant sections below.



at particular airports are more important than high operations at determining the risk of an
accident/incident” during the time period studied. 13

2.1.1. Pilots

DiFiore and Cardosi examined 231 reports filed by pilots or co-pilots from the Aviation System Reporting
System (ASRA).14 DiFiore and Cardosi found that, by far, communication factors were cited most often
overall as contributing to runway incursions. Position awareness (i.e., the pilot being aware of his or her
location in the airfield) was cited next most often. The analysis then focused on certain kinds of runway
incursions: crossing the hold short line, crossing the runway without a clearance, taxi into position and
hold  (TIPH),  and  entering  the  runway  without  authorization.  The  authors  offered  the  broad
categorizations of human factors mentioned previously, but were also able to focus on specific issues
(such as misunderstanding ATC phraseology).

Cardosi and Yost performed an analysis of safety data submitted by pilots. They examined 76 incident
reports and found that unclear airport markings and controller-pilot miscommunication were the two
most cited causes of incursions.

2.1.2. Controllers

In addition to their literature review and analysis of pilot related human factors, Cardosi and Yost looked
at reports focusing on controller-related issues.15 They found that the five most common contributing
factors, in order, were (lack of) aircraft observation, coordination, communication errors, visual data,
and ground operations. Following the analysis of reports, Cardosi and Yost examined the underlying
report data to perform their own independent analysis. They found that the most common contributing
factors  were  controllers  forgetting  about  the  status  of  a  runway  or  an  aircraft,  controller-pilot
communication errors,  controller  coordination errors,  and supervisor/controller  in  charge working  a
control position simultaneously.

2.1.3. Other Airport Personnel

Scarborough,  Bailey,  and  Pounds examined vehicle  operation  deviations  (VODs)  –  where  one  party
involved in a runway incursion is driving a ground vehicle (as opposed to an aircraft) – to attempt to find
factors associated with this type of deviation.16 They used logistic regression and found a statistically
significant relationship between a driver not observing markings, signals, or lighting and the presence of

13 Ibid.

14 DiFiore and Cardosi (2006).

15 Cardosi and Yost (2001).

16 Scarborough, et al. (2008).



inclement weather. On the other hand, no relationship was found between construction outside the
movement area and VODs.

The Airport  Cooperative Research Program, part of the Transportation Research Board, sponsored a
synthesis project focused on winter operations.17 The report provides a thorough exploration of factors
contributing to vehicle-aircraft incidents during winter operations. The report group factors into several
broad categories, including:

 Communication,
 Environment,
 Human performance,
 Situational awareness,
 Time pressures,
 Personnel, vehicles, and equipment resources, and
 Operational factors.

The report cited poor communication (e.g., using the incorrect radio frequency, equipment mishaps, and
frequency congestion), poor visibility, fatigue, time pressures (to clear the runway as quickly as possible
to resume aircraft  operations),  and several  operating  factors  as  major  causes  of  runway incursions
during winter operation. While the report focused on winter operations, it provides insight into ground
operations in general.

2.2.Severity Research on Other Modes

While research focusing on incursion severity seems to be lacking from the current runway incursion
literature,  the  question  of  factors  contributing  to  automobile  crash  severity  has  been  examined
extensively.  This  highway  literature  can  provide  important  insight  into  how  to  approach  modeling
runway incursion severity.  In addition, reviewing crash severity literature can illuminate those areas
were runway incursions are similar to and diverge from the highway crash literature and will require
careful consideration.

2.2.1. Safety Research

Schneider IV et al. examined the factors contributing to driver injury severity along horizontal curves in
Texas.18 A multinomial logit approach was used and separate models were developed for three different
curve radii (small, medium and large). Some of their findings can be translated to a runway incursion
framework while others are less easily translated. The authors found that not wearing a seatbelt greatly
increased the chance of a fatality. The same is true for the presence of alcohol and drugs. Those factors
have no clear analogues in the runway incursion framework. The authors also examined environmental
factors  and  found  that  clear  weather  and  daylight  increase  the  chance  of  a  less  severe  accident.
Weather may also play a role in runway incursion severity. Another factor the authors considered was

17 Quilty (2008).

18 Schneider IV, et al. (2009).



vehicle  type.  Certain  vehicle  types  (motorcycles)  were associated with  higher  probabilities  of  more
severe  injuries  while  others  (semi-  and pickup trucks)  were not.  This  translates  rather  directly  into
examining  the  impact  of  aircraft  type  on  the  runway  incursion  severity.  However,  the  relationship
between pilot experience and aircraft type would need to be carefully considered.

Kockelman and Kweon also examined the factors contributing to driver injury severity.19 The authors
used an ordered probit  methodology  and focused on different  types  of  crashes:  single  versus  two
vehicle crashes. Again, the authors found a relationship between driver injury severity and vehicle type
as well as alcohol. Interestingly, the authors did not find an effect for daylight (versus nighttime) on
injury severity. The authors also found evidence of a non-linear relationship between injury severity and
driver age. It is unclear how age may translate into a useful concept for runway incursions, but it speaks
to the need to examine the included variables in a non-linear way as well. Lastly, the authors examined
how the angle of the crash – head-on versus rear-end for example – contributes to driver injury severity.
This suggests examining a similar notion of angle for runway incursions. For example, it may be that
more severe incursions are associated with more certain relative angles between aircraft.20

Islam and Mannering provide another example of a multinomial logit approach.21 The authors focused
on differing gender-age group combinations (male and female, young, middle-aged, and elderly drivers).
This  paper  examines  automobile-specific  factors  that  could  have  contributed  to  injury  severity.
However,  coefficients  are  reported  for  only  some  of  the  models  (and  then  only  the  statistically
significant ones), and select elasticities are reported in the comparison tables. This makes it difficult for
the reader to gain a full understanding of implications of the model and removes the context for the
results. Additionally, findings that are not statistically significant are as important as those results which
are statistically significant. Reporting even insignificant results is a critical step in the research process.
This analysis does provide an interesting template for comparing different subgroups of a population.
Lam provides  another  example  of  an ordered probit  approach targeted at  comparing  different  age
groups in a graduated licensing system in Australia.22

2.2.2. Methodological Concerns

Xie et al.  used a similar ordered probit model but the coefficients were estimated using a Bayesian
approach.23 They examined the outcome of using different priors on the coefficient estimates. They also
compared the results of standard ordered probit to a Bayesian ordered probit on the complete and a

19 Kockelman and Kweon (2002).

20 The runway incursion dataset provided did not allow for this kind of analysis,  but it remains an interesting
question for future research.

21 Islam and Mannering (2006).

22 Lam (2003).

23 Xie, et al. (2009).



restricted sample to gauge the impact the differing methodologies had when compared on a small
sample of data, a property of interest for statistical models. The restricted sample represents a random
selection of 100 records from the complete set of 76,994 records. In the complete sample, they found
results consistent with other studies: increased age and alcohol usage increase the injury severity. Both
being male and certain vehicle types (vans and SUVs) reduce injury severity.  The researchers found
similar results between the standard ordered probit and Bayesian ordered probit in terms of coefficient
magnitudes and standard errors for the full sample. When examining the restricted sample, the authors
found that the Bayesian ordered probit provided answers more similar to those obtained on the full
sample. This indicates that the Bayesian approach may be better suited to examining small datasets.

Abdel-Aty used an ordered probit approach and found similar results when looking at crashes at three
different roadway types in Florida (roadway sections,  signalized intersections,  and toll  plazas). 24 The
author also tested these results  against  differing  estimation procedures.  Ordered logit  models gave
similar results, while a multinomial logit did not perform as well (as measured by how well the model
predicted the known data and with fewer variables found to be significant). A nested logit procedure
was also tested, but was found to be difficult to implement; the model also provided little improvement
over the ordered probit in terms of model fit. The analysis provides insight into some methodological
considerations but is not as informative for examining runway incursions. The variables used are specific
to the road sections considered (such as whether or not an electronic toll tag was in use).

Perera and Dissanayake also used an ordered probit approach.25 Their analysis focused on injury severity
among older drivers. They developed two models, one for urban roads and one for rural. They found
similar results as other studies, however the analysis is simplistic. For example, they used a series of
binary variables to represent vehicle type. The general form of the variables is that they are equal to one
if the vehicle was that type, and zero otherwise. They included binary variables for cars, vans, pick-ups,
and SUVs. Note that these categories are by definition mutually exclusive: a car cannot be a van or a
pickup or an SUV – knowing that one of the variables is equal to one reveals the value of the other
vehicle variables. All coefficients for these variables are positive in the rural model. The authors report
that the vehicles are associated with increased injury severity. However, without a reference case, the
positive coefficients are inherently meaningless and must be compared amongst themselves. Pickups,
with the lowest positive coefficient, thus reduce injury severity compared to other vehicle types rather
than increase injury severity.  The focus on older drivers and driver age renders this paper not very
informative for runway incursions. However, it is illustrative of a methodological trap that needs to be
avoided.

These papers present a summary of the types of methodologies that may be used to understand runway
incursion severity. Yet, the papers have some flaws worth noting with the intention that the same flaws
are avoided during the modeling process for the current research. Several of the papers suffered from
reporting deficiencies, such as not reporting all coefficients. Other papers suffered from methodological

24 Abdel-Aty (2003).

25 Perera and Dissanayake (2010).



problems in their variable definitions or interpretation, such as the Perera and Dissanayake paper just
described.

While this research is suggestive of methodologies and factors to consider for runway incursions, there
is a subtle difference between crash injury severity and runway incursion severity. Crash injury severities
are conditional on a crash having already occurred whereas runway incursions are attempting to classify
the underlying risk associated with an incident.

It is important to keep these differences in mind when using injury severity literature to inform a study
on runway incursions.  While the underlying methodology will  not change,  the interpretation of  the
coefficients will be slightly different.

2.3.Conclusions

This  literature  review  provided  a  starting  point  for  developing  a  model  for  runway  incursion.  The
research that was reviewed suggested several variables that warrant further examination:

 Policy Variables
o The presence of technologies like ASDE-X
o Runway configuration

 Control Variables
o Weather conditions
o Time of day
o Presence of construction
o Aircraft type
o Pilot characteristics (if available)

Notably, most of the suggested variables are “control variables,” and may not directly influence severity.
While it is important that the control variables are present in the model, they provide little actionable
information. However, the response of an airport to these control variables may be a policy lever that
could be examined. Additionally, it would be valuable in future research to translate potential relevant
policy decisions of airports into variables for evaluation.



3. DATA DESCRIPTION AND DESCRIPTIVE STATISTICS

3.1.Datasets

3.1.1. Runway Incursion Data

Source

The RI  database is  maintained by the FAA Runway Safety Office.  It  contains  information on 10,408
runway incursions from January 2, 2001 through September 30, 2010. It is hand-populated based on
reports filed in response to an incursion and contains information expected to be of use to the Runway
Safety Office in responding to, and preventing further, incursions.26 Recall that the FAA adopted a new
definition of Runway Incursions in 2008. Incursions prior to 2008 were given a rank consistent with the
new system ensuring that the most current definition is used for this analysis.

Contents

The Runway Incursion database contains basic information on each incursion (date, time, airport, type),
aircraft, parties involved (e.g., private citizen, airport personnel), the type of error, current conditions at
the airport, and the closest vertical and horizontal distance between the aircraft.

Data Issues

There are inconsistencies in how the data are coded from year to year that warranted additional data
cleaning. For example, it appears to vary as to how a “no” is recorded; that is, sometimes a variable was
left  “missing”  to  signify  “no”  while  in  other  cases  (sometimes  for  the  same  variable),  a  “no”  was
specifically entered. In others, it appears that “unknown” was used as a valid response in some, but not
all, years of the database.

Additionally, the database was provided without a detailed codebook; follow up with the Runway Safety
Office was required to ascertain the meaning of some specific variables or codings. Full details on the
various data problems encountered and their resolution are in Appendix B: Data Issues.

Sometimes, the database provides more detail than necessary for this analysis (e.g., aircraft type, which
hold short line was crossed). This information was consolidated into categories that are more general for
the purposes of this analysis.

3.1.2. ATQA OE

Source

The ATQA database contains the preliminary and final incident reports for (Air Traffic Controller) OEs
both en-route and on the surface. The Runway Safety Office provided an extract of OE incidents related
to  surface  events.  This  database  contains  1,504  unique  records.  Fields  that  contain  personally
identifiable information or relevant only to airborne events were not included in the extract.

26 The Runway Incursion Database is no longer updated with new events. Runway Incursions are still noted in the
ATQA database, but the more detailed process is no longer performed.



Contents

The database contains all of the information collected in the preliminary and final investigation (FAA
Forms 7210-2 and 7210-3). The database contains information on the aircraft involved in the incident
(see subsequent section), the controller and conditions in the tower, some descriptions of the event,
and information about  the  facility  (including radar  and  other  equipment  in  use  at  the  time of  the
incident).

The ATQA OE database also contains information on causal factors related to the incident. These data
were deemed inappropriate for this analysis for several reasons. Firstly, the causal factors are related to
the severity of the incident by definition in some instances. Thus, they are inappropriate for a modeling
effort as they determine the outcome. Second, the causal factors are not conditioning factors; the causal
factors, rather, indicate how an incident happened. Consider an incident where one of the causal factors
is hear back/read back error. Reducing the number of hear back/read back errors would surely reduce
the number of  incursions,  but provides little  guidance on what conditions increase or decrease the
likelihood of such errors. Finally, the data quality on these variables was also quite low. Thus, even if the
causal  factors  were  determined  to  be  beneficial  to  this  analysis,  the  data  quality  prevented  their
inclusion.

Data Issues

Many of the variables in this dataset are inconsistently coded over time. Others contain a large number
of “missing values.” These missing values in some cases may be interpreted as a “no,” (i.e., the form
instructed one to check the box if the answer is yes) but in other cases, the form presents options for
both  “yes”  and  “no,”  but  missing  values  are  still  prevalent.  In  these  circumstances,  it  may  not  be
possible to distinguish between a missing entry intended to be a “no” and those entries left missing
because the true state of the variable is unknown. For variables with missing values that are not of the
yes/no type (e.g., Current Shift Start Time), observations containing missing values will be excluded from
some types of analysis.

Additionally,  for incidents involving multiple controllers or aircraft,  the database turned over to the
Volpe  Center  does not  distinguish between multiple  involved aircraft  or  between multiple  involved
controllers. While FAA Forms 7210-2 and 7210-3 do allow for multiple aircraft and controllers, the data
appear not to have been preserved in the database extract sent to the Volpe Center. It will be assumed
that the aircraft or controller information provided will be for the primary aircraft or controller “at fault”
or in the wrong location, though this may not be true in all cases.

Other variables,  such as aircraft type, appear to have little standardization in the type of responses
allowed on the form. In these cases, variables were cleaned by the Volpe Center before they were used
for analysis.



3.1.3. ATQA PD

Source

The  ATQA  database  contains  information  on  PD’s  in  addition  to  information  on  OE’s.  Like  the
information for OE’s, the PD data covers both en-route and on the ground incidents. The Runway Safety
Office provided an extract of PD incidents related to surface events. This database contains 6,434 unique
records. Fields that contain personally identifiable information or relevant only to airborne events were
not included in the extract.

Contents

The database contains all of the information collected in the preliminary and final investigation (FAA
Forms 8020-17 and 8020-17).  The database contains information about the pilot  certifications,  pilot
actions, other pilot characteristics, and some information about the incident (such as aircraft type and
some aircraft equipment).

Data Issues

As with the ATQA OE data, variables are inconsistently coded over time. The same issues regarding
missing values are present in the PD data: in some cases, it is impossible to distinguish between missing
values that are “no,” missing values that mean “not applicable,” and unknown values. This is doubly
complicated for variables where “unknown” is a valid answer on the form. As in the OE data, there are
some variables,  such as  Duty  Time in  Last  24 hours,  which contain  missing  values  indicating  those
observations had to be excluded from certain analyses.

Similar to the ATQA OE data, the observations in this database are for one aircraft only. In cases where
two pilots were involved, the information for the second pilot appears to not have been preserved. It is
assumed that the data presented pertain to the pilot and aircraft at fault only.

Finally, some variables required standardization in terms of nomenclature. This is a similar problem to
those noted in the ATQA OE database. For example, there are a large number of pilot certification fields.
In  some  cases,  respondents  selected  “other”  but  provided  a  description  that  matches  one  of  the
available options. A simple text matching process was developed to locate those records that matched
an  already  existing  category.  In  some  cases,  such  as  a  common  response  to  “other,”  additional
categories were created.

3.1.4. Weather Information

Source

METAR, from the French Mètéorologique Aviation Régulière, “is the international standard code format
for hourly surface weather observations.”27 Hourly METAR weather readings at airports are archived by
Plymouth State University in New Hampshire.28 These METAR readings represent a standardized set of

27 Source: http://www.ncdc.noaa.gov/oa/wdc/metar/

http://www.ncdc.noaa.gov/oa/wdc/metar/


information automatically collected by weather stations. Plymouth State University was able to provide
weather readings for a large fraction of the location-hour pairs in the RI dataset.

Contents

The  hourly  readings  contain  information  about  temperature,  humidity,  wind  conditions,  visibility
conditions, and information about active weather such as storms. In addition, some readings contain
summary amounts of precipitation for the past 6 or 24 hours.

Data Issues

Approximately 122 events did not receive weather data, representing 64 different facilities.

Readings of average precipitation over the previous 6 or 24 hours are not reported in every METAR
record. Consequently, these data are missing from a substantial portion of WX database entries. These
variables were deemed impossible to use. A more sophisticated look at the weather data may be able to
incorporate the precipitation measures into an analysis.

3.1.5. Airport Characteristics

Source

Airport characteristic data were gathered by a research team at the University of Virginia Center for Risk
Management and Engineering Systems and provided to the FAA for a related study on safety risks at
airports. These tables (one for each region) contain information on 498 airports.

Information on runways was gathered from FAA Form 5010 submissions. The Volpe Center pulled all
5010  facility  and  runway  data  as  of  July  2011.  A  summary  of  grants  distributed  by  the  Airport
Improvement Program (AIP) provided information on funded runway construction projects that is used
to back out information on runways that opened between an incursion and the present 5010 filing.

Contents

For each airport, the airport characteristics file contains information about the overall characteristics,
average weather, geometric layout, number of incursions by severity, and average operations.

The 5010 report  contains detailed information on each runway and the location of  the facility  as a
whole. The vast majority of this information was discarded, as it was not useful to this project. The data
kept, however, indicate the number of runways at each airport, the length of the shortest and longest
runways, and if are Land and Hold Short Operations (LAHSOs) procedures on any runway at the airport.

Data Issues

The  variables  contained  in  the  excel  spreadsheets  have  plain-text  names  which  are  easily  human-
readable. However, their spreadsheets do not contain additional information on how each data element

28 Website: http://vortex.plymouth.edu/



was gathered or recorded. For example, for average “rainy days,” it is neither clear what makes a day
“rainy,” nor how many years over which the data were averaged.29

Data entry and display from region to region are inconsistent. The number of columns on the summary
of inputs page varies, data are sometimes inappropriately rounded (e.g., percentages to 100% or 0%),
data are rounded to a different number of digits, or inaccurate column headings are applied to data on
some sheets.

Moreover, other data appear unrealistic. In some cases, clusters of airports report identical weather
data, which may be reasonable. However, six airports across Massachusetts report the same weather
data, despite being 130 miles apart.  Notably, two of these are on Cape Cod, which has significantly
different weather from Western or Northern Massachusetts, the location of the other four.

3.1.6. Operations Data

Source

Hourly  operations  data  are  available  from FAA through  the  Enhanced  Traffic  Management  System
Counts (ETMSC) system. Larger time aggregations, such as daily or yearly operations, are also available
through OPSNET.

Contents

The sample data contained hourly readings for approximately 515 airports. For each hour, counts of
commercial air carrier, air taxi, general aviation (GA), and military traffic are given. The counts provided
by ETMSC are allocations of the daily operations (as reported by OPSNET) at that airport to specific
hours. The allocation is done proportionally based on flights with flight plans within a given hour. Thus, if
only one flight filed a flight plan that day, total daily operations would be allocated to the hour in which
that one operation occurred. Because GA and military flights do not file flight plans as frequently, it is
possible that their distribution across the day is unaccounted for.

Data Issues

The main concern with this dataset is the systematic undercounting of GA and military flights. This may
present a problem for modeling if the non-flight planned operations are at systematically different times
of day than those that file a flight plan, resulting in an allocation of daily operations that does not reflect
reality. Ultimately, the correlation between daily, yearly, and hourly operations is fairly high. Therefore,
due to the high correlation and higher reliability of daily and yearly data, hourly operations are not used
in the modeling effort.

29 Through communication with the researchers at University of Virginia, it was determined that the weather
information came from http://weatherbase.com. It appears that the information presented on weatherbase.com
is derived from historical National Weather Service Records (of varying length per data element). Particularly for
“rainy days” no definition is provided on weatherbase.com.



3.2.Merged Data Set

The above datasets were aggregated through a variety of processes that resulted in one overall dataset.
The processes used to combine datasets fall into two major categories: event-specific data and more
general data. The event-specific data are contained in the Runway Incursion database and the two ATQA
databases. The more general information constitutes the airport characteristics, and operations data.
The weather data required special treatment before they could be combined with the Runway Incursion
database.

3.2.1. Merging Disparate Datasets

General Information

Matching the more general  data  to  the Runway Incursion database was simple.  Using  the incident
location (airport code), date, and time the general data could be easily matched. There is no need to
differentiate between multiple incidents at the same airport for certain variables, such as number of
runways at an airport.30 Thus, adding these variables to the underlying Runway Incursion database was
simple.

Event-Specific Data

Conversely,  for event-specific data, there is  a need to distinguish between multiple incidents at the
same place and time. For the ATQA OE data, this was accomplished using a unique event identifier.
Approximately 249 records in the Runway Incursion database did not have matching records in the
ATQA OE dataset. The process for combining the Runway Incursion database with the ATQA PD data was
more complicated. The ATQA PD database did not contain a unique record identifier that matched any
identifier in the Runway Incursion database. A sequential matching procedure was employed to pair
records from the ATQA PD database with the Runway Incursion database.

The first step involved matching records that were unique by date and location. That is, records in each
database that were the only one at that airport on that date were considered to be matches. A spot
check of those matches indicates that they describe the same incident (e.g., aircraft involved, type of
incident). The second step in the sequential match involved hand pairing records that were not already
matched.  Records  were considered matches if  they  were identical  on  an increasingly  looser  set  of
criteria. For example, the exact times of the incidents were compared. If this did not result in a match, a
comparison of information such as the aircraft involved and the hour of the incident followed. This
process resulted in 4,193 records that were in both databases and 1,547 records only in the RI database.

30 Specifically in the case of number of runways at an airport, the information may change over time. A list of
runways built during the time period covered by the data was assembled. Subsequently, the airport characteristics
were updated by year to ensure that the number of runways was accurate and any related variables were changed
appropriately (e.g., intersecting runways, parallel runways).



Weather Data

As mentioned previously,  the weather  data  is  reported hourly,  representing  point  estimates  of  the
conditions at that time. The Runway Incursion database contains the time of the event down to the
minute. Because weather data did not necessarily align with the timing of the incursion event, a way to
interpolate the weather at the time of the event was developed. Two methods were developed: one for
variables that change continuously (like temperature) and one for variables that change discretely (such
as precipitation).

The method for continuous variables relied on linear interpolation. The two weather readings on either
side of the incident were used as the basis for the interpolation. The method for variables that changed
discretely relied on picking the observation closest to the time of the incident. The weather readings
occur roughly hourly so the closest reading is, in general, less than 30 minutes away. This method was
used for the variables including the weather code (indicating precipitation, fog, smoke, haze, etc.). The
remainder of the variables (temperature, cloud cover, etc.) were all subject to the linear interpolation
method. The combination of these two methods provided a set of data that could be matched exactly to
the Runway Incursion database, making the matching trivial after the interpolation steps.

3.2.2. Summary Statistics

Before  examining specific  sets  of  variables,  some general  characteristics  of  the merged dataset  are
worth presenting. It is important to keep these facts in mind when examining specific variables, as the
context in terms of the larger dataset is important.

As mentioned previously, incursion events are categorized along two major axes: incident severity and
incident type. Table 1 presents the cross tabulation of these two categories and the results of Pearson’s
Chi-Squared test (Chi-Squared for short). Additionally, Table 2 presents the expected frequency.

The  expected  frequencies  represent  the  hypothetical  distribution  of  observations  across  the  two
categories if the two variables were unrelated. That is, the expected distribution holds the row totals
constant but  divides observations  proportionally  among the columns.  Deviation from that expected
distribution is taken as indication that the rows and columns are not unrelated. For more information
please see Appendix C.1.



Table 1 – Observed Incident Type Distribution by Severity

OE PD V/PD Total

A 53 63 16 132

B 45 77 23 145

C 943 1,822 543 3,308

D 227 3,340 1,660 5,227

Total 1,268 5,302 2,242 8,812

Chi2 score: 1146.89 

Degrees of Freedom: 6

P-value: 0.00

Table 2 – Expected Incident Type Distribution by Severity

OE PD V/PD Total

A 19 79 34 132

B 21 87 37 145

C 476 1,990 842 3,308

D 752 3,145 1,330 5,227

Total 1,268 5,302 2,242 8,81231

The first thing worth noticing is the frequencies across the various cells. Interestingly, across the time
period covered by our sample, PD incidents occur about twice as often as V/PD incidents and four times
as  often  as  OE  incidents.  The  predominance  of  PD  incidents  is  also  true  for  the  different  severity
categories. The overall frequency is not the only metric of importance, however. Note that OE incidents
are the least frequent overall  but are the second most frequent for categories A, B, and C. In fact,
category A OE incidents occur approximately four times as often as category A PD incidents (giving OEs
the highest rate of category A incidents). Thus, while overall frequency is interesting, it is also important
to understand the relative frequency of each category. For example, a policy intervention directed at
reducing PD incursions (as they are the most common) would do less to reduce category A incursions
than an intervention targeted at OE incursions.

31 Tables contain rounded numbers for convenience, consequently row and column totals may not be the same as
the sum of the displayed cells. The totals are accurate.



The difference between relative frequency and overall frequency raises the need to test for differences
in the two. This is where a Chi-Squared test can be useful.32

As reported in Table 1, the Chi-Squared statistic is extraordinarily high and associated with a p-value of
approximately zero. This indicates that the distribution of incursion severity is not uniform across the
different incident types. Because this is a joint test, it is unable to distinguish which categories are over
or under represented. That is, this test indicates that there is some relationship between incident type
and severity, but cannot shed light on what that relationship might be. A cursory look at the observed
and expected numbers reveals that OE incidents appear to be over represented in categories A, B, and C
while being underrepresented in category D incursions. The opposite is true for PD and V/PD incidents,
which are underrepresented in categories A, B, and C and overrepresented in category D.

This  pattern may be the result  of  one or  more underlying  processes.  Firstly,  the increased severity
among OE incidents might  merely  be a function of  the nature of  OE incidents;  in other  words,  OE
incidents  are  naturally  more  dangerous.  An  alternative  explanation  is  that  controllers  have  been
successfully  trained to avoid  category  D incidents.33 If  controllers  were trained to avoid  category  D
incidents (i.e., relatively minor incidents) the remaining incidents would be the more severe incidents.
Under this scenario, the rate of OE category A, B, and C incursions is natural, but the rate of OE category
D incursions is artificially low. This would be consistent with the observations in  Table 1. Yet a third
possibility is that controller actions are always double-checked by the pilot. That is, each command given
by a controller must be enacted by a pilot. That pilot has the ability to error check those commands and
perhaps  forestall  the  least  dangerous  situations  (such  as  turning  onto  a  closed  runway).  This  is  in
contrast to pilots who are able to take actions without someone double-checking them, such as rolling
over a hold short line or turning onto a runway without contacting the tower.

While some of the causes suggested above might be more or less likely, it is important to note that
there may be multiple explanations. The results presented in Table 1 indicate that additional research is
required to understand the true nature of the relationship between incident type and incident severity.
Results presented later in this paper may help focus research on why OE incidents may be more severe
than other incident types.

Table  1  indicated  that  there  is  a  relationship  between  severity  and  incident  type.  Table  3  further
explores this focusing on OE events. The results presented in Table 3 represent the impact of an incident
being categorized as OE on severity. As with all regression results, it is important to note that these
results represent correlation rather than causation.

Table 3 – Logit Estimate of Impact on Severity, OE Incident

Variable Odds Ratio Standard Error P-Value 95% CI LB 95% CI UB

OE Incident 3.45 .446 0.00 2.67 4.44

32 See Appendix C.1 for more information on calculating chi-squared statistics.

33 Given that much of the focus on runway incursions is centered on the idea that preventing small mistakes will
cascade into  prevention of  larger  mistakes,  training focusing  on Category  D-type  incidents  may  have been  a
reasonable practice.



Variable Odds Ratio Standard Error P-Value 95% CI LB 95% CI UB

Table 3 presents the results of the logit output in terms of odds ratios. 34 As described in Table 3 the odds
of a severe incident are approximately 3.4 times as high for OE events as for non-OE events. This is in
accordance with the results seen in Table 1, but is a more precise measure of how much more likely OEs
are to be severe.

Table 4 presents the same information, but restricted to only conflict events. Here the alternative to
“severe” is  category C rather than both categories C and D. The effect of being an OE still  persists,
though in reduced magnitude.

Table 4 – Logit Estimate of Impact on Severity, OE Incident, Conflict Only

Variable Odds Ratio Standard Error P-Value 95% CI LB 95% CI UB

OE Incident 1.37 .180 0.02 1.06 1.78

The pattern of incursions across regions is also informative. Table 5 and Table 6 present the breakdown
of incident type by region while  Table 7 and  Table 8 present the breakdown of incident severity by
region.  While  the above results  presented in  Table  1 indicate  that  there  is  a  relationship  between
incident type and severity, it is difficult to control for such relationships in a two-way table.

Table 5 – Observed Incident Type Distribution by Region

AAL
Alaska

ACE
Central

AEA
Eastern

AGL
Great
Lakes

ANE
New

England

ANM
Northw

est
Mountai

n

ASO
Souther

n

ASW
Southw

est

AWP
Western

Pacific
Total

OE 27 35 194 248 50 111 250 130 223 1,268

PD 174 265 429 775 204 495 998 545 1,417 5,302

V/PD 200 76 218 426 53 167 335 245 522 2,242

Total 401 376 841 1,449 307 773 1,583 920 2,162 8,812

34 This is a direct transformation of the raw logit  coefficients to aid interpretation. The odds of an event are
defined as the ratio of that event happening to that event not happening. For example, the odds of seeing heads
on a coin toss are 1:1 (or just 1). If an event has a probability of happening of 25% the odds are 1:3 (or 1/3).
Conversely,  if  an event has a probability of happening of 75% the odds are 3:1 (or 3). The odds ratio as it  is
presented in Table 3 is just a measure of how the odds change when that dependent variable changes. In this case,
as the dependent variable is either 0 (not an OE) or 1 (OE event) it is merely the ratio of odds of being severe
between non-OE and OE events. The 95% CI LB and 95% CI UB cells represent the lower and upper bounds of the
95-percent confidence interval surrounding the estimated odds ratio.



Chi2 score: 300.01

Degrees of Freedom: 16

P-value: 0.00

Table 6 – Expected Incident Type Distribution by Region

AAL
Alaska

ACE
Central

AEA
Eastern

AGL
Great
Lakes

ANE
New

England

ANM
Northwest
Mountain

ASO
Southern

ASW
Southwes

t

AWP
Western
Pacific

Total

OE 58 54 121 209 44 111 228 132 311 1,268

PD 241 226 506 872 185 465 952 554 1,301 5,302

V/PD 102 96 214 369 78 197 403 234 550 2,242

Total 401 376 841 1,449 307 773 1,583 920 2,162 8,812

Table 7 – Observed Severity Distribution by Region

AAL
Alas
ka

ACE
Central

AEA
Eastern

AGL
Great
Lakes

ANE
New

England

ANM
Northwest
Mountain

ASO
Southern

ASW
Southwest

AWP
Western
Pacific

Total

A 1 2 18 23 1 13 35 7 32 132

B 2 4 20 19 6 8 29 12 45 145

C 105 123 344 522 123 276 619 337 859 3,308

D 293 247 459 885 177 476 900 564 1,226 5,227

Total 401 376 841 1,449 307 773 1,583 920 2,162 8,812

Chi2 score: 83.30

Degrees of Freedom: 24

P-value: 0.00



Table 8 – Expected Severity Distribution by Region

AAL
Alas
ka

ACE
Central

AEA
Eastern

AGL
Great
Lakes

ANE
New

England

ANM
Northwest
Mountain

ASO
Southern

ASW
Southwest

AWP
Western

Pacific
Total

A 6 6 13 22 5 12 24 14 32 132

B 7 6 14 24 5 13 26 15 36 145

C 151 141 316 544 115 290 594 345 812 3,308

D 238 223 499 860 182 459 939 546 1,282 5,227

Total 401 376 841 1,449 307 773 1,583 920 2,162 8,812

The most striking feature of these tables is the Chi-Squared statistics rather than the individual cells. The
test statistics indicate that the distribution by region is not uniform for incident type or incident severity.
This  is  not surprising given the result  of  the relationship between severity and incident type noted
above. There are likely a variety of causes of this discrepancy, such as varying traffic patterns between
regions and the prevalence of general aviation in each region. The overarching point is that any policy
intervention will have differing impacts across regions.

3.3.Descriptive Statistics

The following section focuses on the analysis of various groups of variables. The groups of variables to
be  discussed  include  aircraft  information,  pilot  information,  controller  information,  weather
information, and other variables. It is important to keep the overall distributions noted in the previous
section in mind when examining these subsets of the data.

While formally a regression model, the logistic regressions (logits) presented in this section serve a role
similar to the descriptive statistics above, a way to explore, rather than explain, the data. The results
presented in this section focus on single variables with some examples of two or three variables at a
time. The drawback of using these logit models is that the dependent variable must be dichotomized –
destroying some information inherent to the rankings. It was chosen to examine severe (categories A
and B) versus non-severe (categories C and D) events. To reiterate, these results serve more as data
exploration and as a way to being to quantify the effect of various variables rather than as a formal
modeling exercise. More formal modeling results are presented in Section 4.3.

3.3.1. Aircraft Information

Aircraft  information originates from both the Runway Incursion and ATQA OE databases.  All  of  the
variables are of a categorical nature. These variables cover information about what the aircraft was
doing at the time of the incident.



Intersecting Runway Departure or Arrival
(Runway Incursion Database)

The Runway Incursion database contains information on whether there was a departure or arrival on an
intersecting runway. Figure 1 presents the distribution of this variable. Table 9 and Table 10 contain the
cross tabulation of this variable by incident severity. Note that category D incursions were excluded (as
by definition an event would not be a D if  this variable was yes).  This  table includes the results  of
Fisher’s Exact test. This is a similar test to the Chi-Squared test indicated above, and tests the same
hypothesis (independence of row and column categories), but is applicable when some cells have very
small values and the assumptions of the Chi-Squared test do not apply.35

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0
F

re
qu

en
cy

N
O

Y
E

S

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
5,

00
0

F
re

qu
en

cy

A B C D

N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
5,

00
0

F
re

qu
en

cy

OE PD V/PD

N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S

0
20

40
60

80
10

0
P

e
rc

e
nt

A B C D

N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S

Intersecting Runway Departure or Arrival

Figure 1 – Distribution of Intersecting Runway Departure or Arrival

Table 9 – Observed Distribution of Intersecting Runway Departure or Arrival by Severity

A B C Total

NO 115 131 3,113 3,359

35 While Fisher’s Exact test and the Chi-Squared test are similar, they are best used in different situations. The Chi-
Squared test relies on asymptotic assumptions to calculate the p-value while Fisher’s Exact test calculates the p-
value exactly; i.e. Fisher’s Exact test is the non-parametric analogue to the Chi-Squared test. In this analysis, the
Chi-Squared test was the preferred test. However, when the asymptotic assumptions seemed impractical (read:
low expected values in a large fraction of table cells), Fisher’s Exact test was employed. Further details on the
calculation for Fisher’s Exact test can be found in Rice (2007).



A B C Total

YES 17 14 195 226

Total 132 145 3,308 3,585

P-value: 0.0036

Table 10 – Expected Distribution of Intersecting Runway Departure or Arrival by Severity

A B C Total

NO 124 136 3,099 3,359

YES 8 9 209 226

Total 132 145 3,308 3,585

This table indicates that there is a relationship between these two variables. Examining the observed
versus expected values indicates that incidents with departure or arrivals on intersecting runways occur
more frequently than expected among category A and B incursions than among category C incursions. In
some sense, this is not surprising given the definition of incursion severity – if there is an arrival or
departure on an intersecting runway it is more likely that the two planes will come into conflict. Given
that, this result indicates that these events are more severe than other conflict events.

Table 9 indicated that there was a relationship between this variable and severity. Table 11 presents the
results in terms of odd ratios. Again, category D incursions are excluded for definitional reasons.

Table 11 – Logit Estimate of Impact on Severity, Intersecting Runway or Departure

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Intersecting Runway 
Departure or Arrival

2.01 .411 0.00 1.35 3.00

The results suggest that the odds of being severe for incidents with an operation on an intersecting
runway are approximately twice as large as those without. Again, this is consistent with Table 9, but is a
more quantitative look at this relationship.

36 In general,  the tables presented in this section follow the convention of presenting only the P-value when
Fisher’s Exact was performed. When a Chi Squared test was performed, the Chi Squared test as well as its statistic
will be presented.



Table 12 presents the results of a logit where the dependent variable is a flag for an OE incident or not.
Again, category D incursions were excluded for definitional reasons. Note that the alternative here is
“not OE”; that is, both V/PD and PD incidents are included in the alternative. The odds of an incident
being an OE are approximately 4.4 times as high if there is an operation on an intersecting runway.
Recall  that no V/PD incidents  were coded as  “yes”  for  this  variable.  This  should  temper the effect
somewhat, as seen in Table 13.

Table 12 – Logit Estimate of Impact on Incident Type, Intersecting Runway or Departure

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Intersecting Runway 
Departure or Arrival

4.44 .633 0.00 3.36 5.87

Table 13 – Logit Estimate of Impact on Incident Type, Intersecting Runway or Departure, OE and PD Only

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

Intersecting Runway 
Departure or Arrival

3.40 .484 0.00 2.56 4.48

Table 14 and Table 15 contain a cross tabulation of the same variable by incident type. Category D
incursions  are  still  excluded.  Interestingly,  intersecting  runway  departure  or  arrivals  occur  most
frequently for OE incidents. The Chi-Squared statistic supports the conclusion that there is a relationship
between these two variables.  The observed values  reveal  two things.  First,  there is  only one V/PD
incident where this is variable is coded as yes. This suggests that airport vehicles are effectively never in
a  situation  where  this  could  be  coded  yes.  Secondly,  OEs  are  over  represented  while  PDs  are
underrepresented. This relationship holds even when V/PDs are excluded from the analysis, as seen in
Table 16 and Table 17. This indicates that intersecting runway departures or arrivals are proportionally
less a problem for pilots than controllers. Further research is required in this area to detail why that is
the case.

Table 14 – Observed Distribution of Intersecting Runway Departure or Arrival by Incident Type

OE PD V/PD Total

NO 901 1,876 582 3,359

YES 140 86 0 226

Total 1,041 1,962 582 3,585

Chi2 score: 141.38

Degrees of Freedom: 2



P-value: 0.00

Table 15 – Expected Distribution of Intersecting Runway Departure or Arrival by Severity

OE PD V/PD Total

NO 975 1,838 545 3,359

YES 66 124 37 226

Total 1,041 1,962 582 3,585

Table 16 – Observed Distribution of Intersecting Runway Departure or Arrival by Incident Type, OE & PD

OE PD Total

NO 901 1,876 2,777

YES 140 86 226

Total 1,041 1,962 3,003

Chi2 score: 80.31

Degrees of Freedom: 1

P-value: 0.00

Table 17 – Expected Distribution of Intersecting Runway Departure or Arrival by Severity, OE & PD

OE PD Total

NO 963 1,814 2,777

YES 78 148 226

Total 1,041 1,962 3,003

Landed or Departed on Closed Taxiway or Runway
(Runway Incursion Database)

Figure  2  presents  the  overall  distribution  of  this  variable.  Table  18  and  Table  19  present  a  cross
tabulation  of  this  variable  by  severity.  This  table  excludes  incidents  that  were  classified  as  V/PD
incidents. The definition of this variable is meaningless in the context of a V/PD, as vehicles cannot land
or takeoff; additionally, only one V/PD was coded as yes on this variable. Additionally, Table 18 contains
the output of Fisher’s Exact test.
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Figure 2 – Distribution of Landed or Departed on Closed Taxiway or Runway

Table 18 – Observed Distribution of Landed or Departed on Closed Taxiway or Runway by Severity

A B C D Total

NO 111 117 2,725 3,412 6,365

YES 5 5 40 155 205

Total 116 122 2,765 3,567 6,570

P-value: 0.00

Table 19 – Expected Distribution of Landed or Departed on Closed Taxiway or Runway by Severity

A B C D Total

NO 112 118 2,679 3,456 6,365

YES 4 4 86 111 205



A B C D Total

Total 116 122 2,765 3,567 6,570

The  results  clearly  indicate  a  relationship  between this  variable  and  severity.  The  expected  values
indicate  that  categories  A,  B,  and  D  are  overrepresented  while  category  C  is  underrepresented.  A
possible interpretation of this split is that, while landing or departing on a closed taxiway or runway is a
dangerous action, the definition of category D precludes a higher rating if  there is no other aircraft
around. That is, landing or departing on a closed taxiway or runway is inherently quite dangerous. When
another aircraft is nearby, this becomes a severe conflict event (category A or B). If no other plane is
nearby, the event is rated a D, despite the inherent danger of the action. This is  only one possible
explanation; further testing is required to rule out or confirm this hypothesis.

Table 20 and Table 21 present the breakdown of this variable by incident type. Note that again V/PDs
have been excluded for the reasons noted above. Table 20 also includes the results of a Chi-Squared
test. The test indicates that there is a relationship between this variable and the type of incident. OE
incidents are observed more frequently than one would expect.

Table 20 – Observed Distribution of Landed or Departed on Closed Taxiway or Runway by Incident Type

OE PD Total

NO 1,200 5,165 6,365

YES 68 137 205

Total 1,268 5,302 6,570

Chi2 score: 26.14

Degrees of Freedom: 1

P-value: 0.00

Table 21 – Expected Distribution of Landed or Departed on Closed Taxiway or Runway by Incident Type

OE PD Total

NO 1,228 5,137 6,365

YES 40 165 205

Total 1,268 5,302 6,570

This variable brings up another important issue. While OE incidents occur twice as often, proportionally,
the  baseline  for  comparison  is  important.  Table  20  presents  the  universe  of  PD  and  OE  runway



incursions. Comparing the observed rate to the total number of events indicates if this is a larger fraction
of observed events for  one group or  another,  but  says  little  about  the  error rate.  In terms of  this
variable, pilot incursions occur roughly twice as often as controller errors. However, that comparison is
conditional on all the incursions that have occurred. There is no information available about how often
pilots or controllers are presented with an opportunity to commit this error, which may be the more
appropriate basis for comparison rather than number of incursions. One possible way to address this
issue is to identify the number of operations per individual. Throughout the day, pilots are presented
with far fewer opportunities to land an aircraft on a closed runway than a controller might be, and
further research needs to account for this. 

Landed or Departed Without Clearance Communication
(Runway Incursion Database)

Figure  3  presents  the  overall  distribution  of  this  variable.  Table  22  and  Table  23  present  a  cross
tabulation  of  this  variable  by  severity.  V/PD incidents  are  again  excluded  from the analysis  as  this
variable makes little sense in that context. For reference, zero V/PD incidents were coded yes on this
variable. 

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0
F

re
qu

en
cy

N
O

Y
E

S

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
F

re
qu

en
cy

A B C D

N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
F

re
qu

en
cy

OE PD V/PD

N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S

0
20

40
60

80
10

0
P

e
rc

e
nt

A B C D

N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S N
O

Y
E

S

Landed or Departed Without Clearance Communication

Figure 3 – Distribution of Landed or Departed Without Clearance Communication



Table 22 – Observed Distribution of Landed or Departed Without Clearance Communication by Severity

A B C D Total

NO 85 93 2,417 2,286 4,881

YES 31 29 348 1,281 1,689

Total 116 122 2,765 3,567 6,570

Chi2 score: 444.07

Degrees of Freedom: 3

P-value: 0.00

Table 23 – Observed Distribution of Landed or Departed Without Clearance Communication by Severity

A B C D Total

NO 86 91 2,054 2,650 4,881

YES 30 31 711 917 1,689

Total 116 122 2,765 3,567 6,570

Again, the test statistics indicate that there is a relationship between severity and this variable. A similar
pattern to that seen for landing or departing on a closed runway or  taxiway is  seen:  category D is
observed more frequently than expected while the opposite is true for category C. A similar explanation
of the pattern can be hypothesized for this variable as well. Table 24 and Table 25 presents the same
cross tab, but examine conflict events only.

Table 24 – Observed Distribution of Landed or Departed Without Clearance Communication by Severity, 
Conflict Only

A B C Total

NO 101.0 116.0 2,960.0 3,177.0

YES 31.0 29.0 348.0 408.0

Total 132.0 145.0 3,308.0 3,585.0

Chi2 score: 32.29

Degrees of Freedom: 2

P-value: 0.00



Table 25 – Expected Distribution of Landed or Departed without Clearance Communication by Severity, 
Conflict Only

A B C Total

NO 117 128 2,932 3,177

YES 15 17 376 408

Total 132 145 3,308 3,585

Excluding Ds from the analysis removes the conflict/non-conflict event dynamic: Categories A, B, and C
are  all  conflict  events.  The Chi-Squared test  again  indicates  a relationship  between these variables.
Given the expected values, it appears that this variable may increase severity, once the presence of a
second aircraft is controlled for.

Table 26 presents the estimate of the odds ratio with respect to severity for this variable.

Table 26 – Logit Estimate of Impact on Severity, Landed or Departed without Clearance Communication

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Landed or Departed 
Without Clearance 
Communication

.973 .148 0.86 .722 1.31

Contrary to the results presented in Table 22, there is no increase in the likelihood of a severe event
given that an aircraft landed or departed without clearance. This is likely due to the loss of information
from consolidating the severity categories. Table 27 presents the same regression, excluding category D
events (i.e., removing the conflict/non-conflict dynamic). The relationship seen in Table 22 is now clearly
visible,  indicating that incidents  where an aircraft  landed or  departed without clearance have odds
approximately 2.3 times larger of being severe.

Table 27 – Logit Estimate of Impact on Severity, Landed or Departed without Clearance Communication, Conflict
Only

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Landed or Departed 
Without Clearance 
Communication

2.34 .374 0.00 1.71 3.20

Table 28 presents the results of a logit where the dependent variable is whether or not the incident was
an OE. AS V/PDs were excluded, the alternative here is PD; thus, the odds ratio indicates the increase (or
decrease) in the likelihood of being an OE compared to a PD. The results indicate that incidents where



an aircraft  landed or  departed without  clearance are  dramatically  less  likely  to  be OEs.  This  is  not
surprising given the nature of the error.

Table 28 – Logit Estimate of Impact on Incident Type, Landed or Departed Without Clearance Communication

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Landed or Departed 
Without Clearance 
Communication

.068 .011 0.00 .049 .095

Taxiing Out for Departure
(Runway Incursion Database)

This variable indicates whether the primary aircraft was taxiing out for departure or not. Observations
coded no may be in any other phase of flight. Figure 4 presents the overall distribution of this variable.
Table 29 and Table 30 present the breakdown of this variable by severity.
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Figure 4 – Distribution of Taxiing Out for Departure



Table 29 – Observed Distribution of Taxiing Out for Departure by Severity

A B C D Total

NO 95 110 1,863 3,031 5,099

YES 37 35 1,443 2,195 3,710

Total 132 145 3,306 5,226 8,809

Chi2 score: 33.18

Degrees of Freedom: 3

P-value: 0.00

Table 30 – Expected Distribution of Taxiing Out for Departure by Severity

A B C D Total

NO 76 84 1,914 3,025 5,099

YES 56 61 1,392 2,201 3,710

Total 132 145 3,306 5,226 8,809

The Chi-Squared statistic indicates that there is a relationship between this variable and severity. The
expected  values  indicate  that  conflict  events  are  underrepresented  while  category  D  events  are
observed more often than expected. This may be indicative of the kind of behavioral errors with which
this variable is associated. For example, if taxiing aircraft rarely interact with other aircraft on a runway
(i.e. only when the taxiing aircraft is crossing the runway), any given error is more likely to be a D than
any other category.37

Table 31 and Table 32 present the breakdown of this variable by incident type. V/PDs are dramatically
underrepresented when compared with the expected value. This is likely an indication that vehicles on
aircraft grounds are rarely near aircraft that are taxiing out for departure. This variable is coded yes
more frequently (both in relative and absolute terms) for PD incidents than OE incidents. Again, without
the proper baseline (total taxi operations by group) it is hard to tell if one group is committing the error
more than the other; however, given that there is an error, this appears to be more associated with
pilots than controllers.

37 As a reminder, this research examines only runway incursions. If an incident occurred while taxiing, but did not
involve a runway (such as a collision on taxiways or crossing a hold short line at a taxiway intersection), it would
not be reported in the dataset used for this analysis.



Table 31 – Observed Distribution of Taxiing Out for Departure by Incident Type

OE PD V/PD Total

NO 821 2,143 2,135 5,099

YES 446 3,157 107 3,710

Total 1,267 5,300 2,242 8,809

Chi2 score: 1969.36

Degrees of Freedom: 2

P-value: 0.00

Table 32 – Expected Distribution of Taxiing Out for Departure by Incident Type

OE PD V/PD Total

NO 733 3,068 1,298 4,366

YES 534 2,232 944 3,176

Total 1,267 5,300 2,242 7,542

Land and Hold Short
(Runway Incursion Database)

This variables codes for whether or not there was a land and hold short operation in effect for one of
the aircraft involved in the incident. It is important to keep in mind the overall low frequency of errors
involving LAHSO, there  are only  17 such incursions.  Consequently,  it  is  difficult  to  draw any strong
conclusions regarding incident severity; however, that no category A or B incidents occurred during a
LAHSO. All 17 incidents were category C or D (16 Cs and 1 D). Figure 5 presents the overall distribution of
this variable. Table 33 and Table 34 present the frequency of this variable by incident type. The test
statistic  indicates  that  there  is  a  relationship  between  these  variables,  and  OEs  appear  to  be
overrepresented.  Without  information  on  the  number  of  LAHSOs  that  do  not  result  in  a  runway
incursion, it is difficult to determine the appropriate baseline rate of comparison.
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Figure 5 – Distribution of Land and Hold Short

Table 33 – Observed Distribution of Land and Hold Short by Incident Type

OE PD Total

NO 1,258 5,295 6,553

YES 10 7 17

Total 1,268 5,302 6,570

P-value: 0.00

Table 34 – Expected Distribution of Land and Hold Short by Incident Type

OE PD Total

NO 1,265 5,288 6,553

YES 3 14 17

Total 1,268 5,302 6,570



Table 35 provides an estimate of the increase in the odds of being an OE if an event occurs during a
LAHSO. Note that V/PDs were excluded from this regression to be consistent with Table 33. While the
effect  is  fairly  large in  magnitude,  it  is  also imprecise  given the lower  frequency of  LAHSOs in  the
dataset.

Table 35 – Logit Estimate of Impact on Incident Type, Land and Hold Short Operation

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

LAHSO 6.01 2.97 0.00 2.28 15.8

Evasive Action Taken
(ATQA OE)

This variable codes for whether or not the aircraft took evasive action. 38 This variable only applies when
the incursion involves two aircraft (or an aircraft and a vehicle) so the relevant set is only category A, B,
and C incursions39. Figure 6 presents the distribution of this variable. Table 36 and Table 37 present the
breakdown of this variable by severity. This variable originates in the ATQA OE dataset, so is relevant
only to OE incidents.

38 A definition of evasive action is not provided, either in the database or on the reporting form. Thus, it is unclear
what the threshold for this variable to be coded as “yes” is.

39 This limitation is not just based on intuition. There are no incidents coded yes on this variable and as Category
D.
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Figure 6 – Distribution of Evasive Action Taken

Table 36 – Observed Distribution of Evasive Action Take by Severity

A B C Total

No 28 27 687 742

Unknown 7 3 66 76

Yes 13 9 91 113

Total 48 39 844 931

P-value: 0.00

Table 37 – Expected Distribution of Evasive Action Taken by Severity

A B C Total

No 38 31 673 742

Unknown 4 3 69 76



A B C Total

Yes 6 5 102 113

Total 48 39 844 931

Categories A and B appear to be observed more frequently than statistically expected. Intuition suggests
that aircraft that have to take evasive action are in more dangerous situations. There is a possibility that
evasive action may be taken into account with the definitions of categories A and B. Table 38 and Table
39 present the breakdown among category A and B only. The test statistic indicates that there is no
relationship between the variable and severity. Combining this with the results from Table 36 indicate
that evasive action helps distinguish between category C and the remaining two categories, rather than
uniformly increasing severity.

Table 38 – Observed Distribution of Evasive Action Taken by Severity, A and B Only

A B Total

No 28 27 55

Unknown 7 3 10

Yes 13 9 22

Total 48 39 87

P-value: 0.50

Table 39 – Expected Distribution of Evasive Action Taken by Severity, A and B Only

A B Total

No 30 25 55

Unknown 6 4 10

Yes 12 10 22

Total 48 39 87

Phase of Flight
(Runway Incursion Database)



The Runway Incursion database contains  information on the phase of  flight  of  the primary  aircraft
involved at the time of the incident. The three possibilities are taxiing, takeoff, and landing. Table 40
presents the results of a simple logit looking at the impact on the odds of being severe.
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Figure 7 – Distribution of Phase of Flight

Table 40 – Logit Estimate of Impact on Severity, Phase of Flight

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Landing 1.68 .255 0.00 1.25 2.26

Takeoff 2.43 .357 0.00 1.82 3.24

The baseline for comparison is a taxiing aircraft. It appears that both takeoff and landing tend to be
more  severe  than  taxiing  aircraft.  While  not  an  inherently  surprising  result,  the  disparity  between
takeoff  and landing is  interesting.  Takeoff  appears to be the more dangerous of  the two situations
compared to taxiing. Perhaps this has to do with acceleration versus deceleration of the aircraft (i.e.,
aircraft taking off are in general moving faster towards a potential collision while landing aircraft are
already breaking as part of the landing procedure).



Table 41 presents the results for the odds of being an OE incident. Again, both takeoff and landing have
higher odds than taxiing. But the magnitude of the impact is not as important as the disparity between
takeoff and landing. It appears that an incident involving an aircraft taking off is more likely to be a
controller error than an incident involving a landing aircraft. Naively, one might have assumed that the
impacts would be the same. This may have implications for controller processes or training, pending the
results of a more in depth study of this issue. 

Table 41 – Logit Estimate of Impact on Incident Type, Phase of Flight

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Landing 1.18 .095 0.04 1.01 1.38

Takeoff 2.13 .163 0.00 1.83 2.47

Finally, Table 42 presents a crude model that controls for the effect of phase of flight and its interaction
with incident type. Phase of flight and incident type appear to have independent effects on severity. The
magnitude of the effects appears consistent with that seen in their separate estimates, though the exact
values have shifted slightly. Lastly, there is no interaction between phase of flight and incident type;
they are merely the sum of their parts.40

Table 42 – Logit Estimate of Impact on Severity, Incident Type and Phase of Flight

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Landing 1.56 .290 0.02 1.09 2.25

Takeoff 2.14 .403 0.00 1.48 3.09

OE Incident 2.59 .526 0.00 1.74 3.86

Landing and OE Incident 1.15 .377 0.68 .602 2.18

Takeoff and OE Incident .987 .305 0.97 .539 1.81

Commercial Carrier
(Runway Incursion Database, ATQA)

Given the more stringent requirements for pilots on commercial carriers, it may be the case that they
are less likely to be involved in serious incidents. Additionally, commercial carrier pilots are flying into
different airports than the majority of GA pilots. For the purposes of this analysis, a commercial carrier is
any carrier not flying under GA regulations (part 91), military regulations, or conducting on demand
operations  (part  135).  This  essentially  divides  the population into scheduled carriers  (domestic  and

40 Note that odds ratios are multiplicative. In this case, the combined impact on the odds of a severe incident of
an OE involving an aircraft taking off is approximately 5.5.



foreign) and other carriers.41 Table 43 presents the distribution of this variable. Table 44 presents the
impact of this categorization on the odds of a severe event. 

Table 43 – Distribution of Commercial Carrier Status

A B C D Total

NO 106 112 2,305 3,141 5,664

YES 26 30 955 611 1,622

Total 132 142 3,260 3,752 7,286

Table 44 – Logit Estimate of Impact on Severity, Commercial Carrier Status

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Commercial Carrier .893 .136 0.46 .6612 1.20

When considering all  incident categories, there is no impact from being a commercial carrier. When
considering only conflict events, as shown in Table 45, the relationship becomes more pronounced. This
disparity between conflict  and non-conflict  events is  not unusual,  likely indicating that commercials
carriers (as defined above) are in situations where category D events can occur less frequently. Conflict
versus  non-conflict  aside,  commercial  carriers  still  appear  to  be  involved  in  less  severe  incidents,
reducing the odds of a severe incursion by almost 40%. This may be due to pilot experience, as noted
above. A focused research effort examining issues such as pilot training, pilot experience, familiarity
with the airport, total pilot hours, and other factors could help explain the origin of this fairly large
effect.

Table 45 – Logit Estimate of Impact on Severity, Commercial Carrier Status, Conflict Only

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

Commercial Carrier .620 .096 0.00 .458 .840

 

Finally, Table 46 presents the interaction between commercial carrier and incident type on severity.
Interestingly, the impact of commercial carrier flag is not a good indicator of severity, once incident type
is accounted for. Some of the impact of incident type on severity is also diminished. The interaction
between incident type and commercial carrier status is also interesting. This simplistic model suggests
that while OE incidents in general are more severe, OE incidents involving commercial carriers tend to
be  less  severe.  This  is  possibly  capturing  some of  the  same factors  as  the  OEP  35  flag  (e.g.,  pilot
experience, pilot familiarity) but it is interesting that the interaction exists for OE incidents but not PD

41 Note that some carriers under part 135 do in fact fly scheduled service. However, it is impossible to distinguish
those part 135 aircraft that are scheduled from those that are not for the purposes of this analysis.



incidents.  The  mechanism  through  which  commercial  status  interacts  with  OE  incidents  should  be
investigated further, but these results suggest it should be included in an OE focused model.

Table 46 – Logit Estimate of Impact on Severity, Commercial Carrier Status and Incident Type

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Commercial Carrier 1.15 .408 0.70 .571 2.30

OE Incident 2.38 .585 0.00 1.47 3.85

PD Incident .583 .136 0.02 .369 .919

Commercial Carrier & OE .371 .160 0.02 .159 .866

Commercial Carrier & PD .733 .316 0.47 .314 1.71

Number of Aircraft Involved
(ATQA OE)

This variable measures the number of aircraft involved in an incident.42 This variable is only available for
OE incidents. Table 47 and Table 48 present the observed and expected frequencies of this variable.
Note that category D incursions were excluded from this analysis. Recall that an incident is category D by
definition if there is only one entity involved. Thus, there are no observed values of this variable other
than one for category D incidents.

Table 47 – Observed Distribution of Number of Aircraft Involved by Severity

A B C Total

0 0 0 1 1

1 4 7 124 135

2 43 31 704 778

3 1 1 14 16

4 0 0 1 1

Total 48 39 844 931

P-value: 0.59

42 This  variable  measures  aircraft  specifically,  though an incursion can be committed by an  aircraft,  another
vehicle, a person, or an animal. Thus, this variable can take on values of zero or one and still be a conflict event due
to the presence of non-aircraft entities.



Table 48 – Expected Distribution of Number of Aircraft Involved by Severity

A B C Total

0 0 0 1 1

1 7 6 122 135

2 40 33 705 778

3 1 1 15 16

4 0 0 1 1

Total 48 39 844 931

Note that the majority of incidents involve one or two aircraft. However, there does not appear to be a
relationship between severity and the number of aircraft involved (except in category D).

3.3.2.  Pilot Information

This information describes the pilot involved in the incident. This information comes from the Runway
Incursion and ATQA PD databases. Some variables may only pertain to PD incidents, which are noted in
the variable specific discussion. Some variables are categorical while others are continuous.

Foreign Aircraft or Pilot
(Runway Incursion Database)

This variable indicates whether or not the pilot or aircraft involved were of foreign origin. Table 49 and
Table 50 provide the breakdown of this variable by severity. Figure 8 presents the overall distribution of
this variable.
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Figure 8 – Distribution of Foreign Pilot Status

The distribution is weighted towards the conflict categories of A, B and C. The test statistic indicates that
there is a relationship between these two variables. An underlying cause may be that most foreign pilots
or  aircraft  entering  the  United  States  are  commercial.  Commercial  pilots  are  (generally)  at  busier
airports, and so are less likely to be in a category D due to the increased traffic at the airport. Because of
the strong relationship between foreign pilot status and commercial carrier status, it is difficult to draw
strong conclusions about the effect of foreign pilot status on severity.

Table 49 – Observed Distribution of Foreign Aircraft or Pilot by Severity

A B C D Total

NO 129 141 3,208 5,119 8,597

YES 3 4 100 108 215

Total 132 145 3,308 5,227 8,812



Table 50 – Expected Distribution of Foreign Aircraft or Pilot by Severity

A B C D Total

NO 129 141 3,227 5,099 8,597

YES 3 4 81 128 215

Total 132 145 3,308 5,227 8,812

Pilot Lost
(ATQA PD)

This variable indicates whether the investigation determined if the pilot was lost at the time of the
incident. Figure 9 presents the overall  distribution of this variable. Table 51 and Table 52 present a
tabulation of this variable by severity. Fisher’s Exact test indicates that there is no relationship between
these variables. While not entirely surprising, this does indicate that, at least at a cursory level, pilots
being lost on the airfield does not increase the severity of an ensuing incident. It may, however, increase
the likelihood of an incident occurring at all; this cannot be tested without “normal operations” data for
all non-incident operations.
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Figure 9 – Distribution of Pilot Lost

Table 51 – Observed Distribution of Pilot Lost by Severity

A B C D Total

NO 41 49 1,277 2,196 3,563

YES 1 6 89 177 273

Total 42 55 1,366 2,373 3,836

P-value: 0.30

Table 52 – Expected Distribution of Pilot Lost by Severity

A B C D Total

NO 39 51 1,269 2,204 3,563

YES 3 4 97 169 273

Total 42 55 1,366 2,373 3,836





Pilot Ratings
(ATQA PD)

The ATQA PD database contains information on pilot ratings. These ratings include: single engine sea,
single engine land, multiengine sea, multiengine land, rotorcraft, glider, lighter than air, and other. The
sea and land ratings for multiengine and single engine categories were combined due to the low number
of sea plane ratings in the dataset. The distribution of response after the combination of sea and land
ratings can be seen in Figure 10. Chi-Squared tests were run for each category separately; the majority
of  the categories  have no significant relationship with severity.  The only category that presented a
marginally significant result was the multiengine rating category. The results of this test are presented in
Table 53 and Table 54. The pattern of expected versus observed is unclear. The major contribution to
the test statistic appears to be from the overrepresentation of category C incursions. This may be an
artifact of the distribution of multiengine rating in the population; that is, pilots with multiengine ratings
may fly into busier airports and thus would be more likely to be in a conflict event.
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Figure 10 – Frequency of Pilot Ratings by Rating Category

Table 53 – Observed Distribution of Multiengine Rating by Severity

A B C D Total

NO 22 36 693 1,287 2,038



A B C D Total

YES 20 19 673 1,086 1,798

Total 42 55 1,366 2,373 3,836

Chi2 score: 7.68

Degrees of Freedom: 3

P-value: 0.05

Table 54 – Expected Distribution of Multiengine Rating by Severity

A B C D Total

NO 22 29 726 1,261 2,038

YES 20 26 640 1,112 1,798

Total 42 55 1,366 2,373 3,836

Entered Runway without Clearance
(Runway Incursion Database)

If the primary aircraft in the event entered a runway without clearance, this variable is coded yes. The 
Chi-Squared statistic, contained in Table 55 and Table 56, indicates that there is a relationship between 
this variable and severity. Category C is underrepresented while all other categories are over 
represented.
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Figure 11 – Distribution of Entered Runway without Clearance

Table 55 – Observed Distribution of Entered Taxiway or Runway without Clearance by Severity

A B C D Total

NO 1 17 950 696 1,664

YES 131 128 2,357 4,530 7,146

Total 132 145 3,307 5,226 8,810

Chi2 score: 347.97

Degrees of Freedom: 3

P-value: 0.00

Table 56 – Expected Distribution of Entered Taxiway or Runway without Clearance by Severity

A B C D Total

NO 25 27 625 987 1,664



A B C D Total

YES 107 118 2,682 4,240 7,146

Total 132 145 3,307 5,226 8,810

Pilot Instrument Rating
(ATQA PD)

This variable indicates the instrument rating of the pilot  involved in the database. Interestingly, the
coding on this variable contains information on if the pilot was rated previously, but is not currently.
Figure 12 presents the overall distribution of this variable. Table 57 and Table 58 present a breakdown
of this variable. Note that unknown ratings were excluded, as they provide little insight into the impact
of this variable.
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Figure 12 – Distribution of Pilot Instrument Rating

Table 57 – Observed Distribution of Pilot Instrument Rating by Severity

A B C D Total

Current 15 21 686 1,106 1,828

Not Current 1 2 74 155 232



A B C D Total

No Rating 20 23 351 680 2,060

Total 36 46 1,111 1,941 3,134

Table 58 – Expected Distribution of Pilot Instrument Rating by Severity

A B C D Total

Current 21 27 648 1,132 1,828

Not Current 3 3 82 144 232

No Rating 12 16 381 665 2,060

Total 36 46 1,111 1,941 3,134

Table 59 – Difference between Observed and Expected of Pilot Instrument Rating by Severity

A B C D

Current -6 -6 +38 -26

Not Current -2 -1 -8 +11

No Rating +8 +7 -30 +15

The Chi-Squared test statistic indicates that there is a relationship between severity and instrument
rating. Current and Not Current are underrepresented for categories A and B, see Table 59 for the
deviations between observed and expected. The opposite is true for No Rating. For categories C and D,
Not current and No Rating are underrepresented for category C and overrepresented for category D,
while Current is observed more than expected for category C and less than expected for category D.
When restricted to only conflict events (Table 60 and Table 61), Current and Not Current follow a similar
pattern in terms of observed compared to expected values and the mitigating impact on severity is still
present. However, the impact of having a non-current rating may be non-linear. These data suggest that
having ever been rated is associated with lower incident severity.  Without additional statistical and
human factors study, it is unclear if these pilots get into fewer severe situations, better recover from
mistakes, or if this can be explained by other factors, including the possibility of a spurious correlation.



Specifically, this variable is easily conflated with commercial carrier status (as all commercial carriers are
instrument rated while not all GA pilots are instrument rated).

Table 60 – Observed Distribution of Pilot Instrument Rating by Severity, Conflict Only

A B C Total

Current 15 21 686 722

Not Current 1 2 74 77

No Rating 20 23 351 799

Total 36 46 1,111 1,193

Table 61 – Expected Distribution of Pilot Instrument Rating by Severity, Conflict Only

A B C Total

Current 22 28 672 722

Not Current 2 3 72 77

No Rating 12 15 367 799

Total 36 46 1,111 1,193

Finally, Table 62 presents an estimate of the impact on severity. The baseline here is considered to be a 
pilot with no instrument rating. Thus, the odds ratios represent the reduction in the likelihood of being 
severe if the pilot were either currently rated or rated in the past, but not currently. These estimates 
support the conclusion that pilots with either current rating or a past rating are less likely to be involved 
in a severe incursion. Interestingly, the confidence intervals for the two estimates overlap, indicating 
that the magnitude of the two estimates cannot be considered statistically different. That is, this 
preliminary estimate suggests that pilots with past ratings are as safe as pilots with current ratings. 
Further research into pilot instrument ratings should account for the three rating groups (current, past, 
and never rated) and further investigate whether current and past ratings have the same impact on 
severity.



Table 62 – Logit Estimate of Impact on Severity, Pilot Instrument Rating

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Current Rating 0.48 0.11 0.00 0.31 0.75

Rated, but not Current 0.31 0.19 0.05 0.10 1.02

Pilot Hours in Make and Model
(ATQA PD)

For each PD incident, pilots are required to report hours in the make and model of aircraft in which the
incident occurred. Table 63 presents the percentiles of this distribution. While the overall distribution is
interesting, the distribution of pilot hours by severity level is more pertinent to the question at hand.
Figure 13 presents this distribution.

Table 63 – Percentiles of Pilot Hours in Make and Model

10th 25th 50th 75th 90th

A 24 74 200.5 508 1400

B 25.5 87.5 160 680 1925

C 38 100 400 1400 3500

D 31 100 350 1199 3000

Overall 35 100 356 1200 3100
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Figure 13 – Distribution of Pilot Hours in a Make and Model

Figure 13 presents two pieces of information. A histogram representing the distribution detailed in Table
63 is on the left. The graph on the right presents the distribution by severity in terms of a boxplot (or
box and whisker plot).43

Figure 13 reveals that no pilot  with more than 5,000 hours in the make and model involved in the
incident has committed a severe incursion (category A or B). Figure 13 also reveals that the distribution
of hours is weighted heavily towards zero for all severities. It appears, however, that the median value
for categories A and B are lower than those of C and D, indicating a leftward shift in the distribution. In
other words, pilots involved in category C and category D incursions tend to have more hours in that
make and model. There are two possible explanations that come to mind.

Appendix A: The most obvious is that there is an effect of experience. As pilots spend more
hours in a make and model they are less likely to commit serious incursions.

Appendix B: An alternative explanation is that bad pilots do not ever get many hours in a
make and model. Under this hypothesis, error rates are fairly constant across experience levels
but pilots that commit many serious errors stop being pilots (e.g., they do not enjoy it, cannot
get licensed). This would lead to lower hour pilots being concentrated in categories A and B
rather than in C or D.

43 See Appendix C.2 for more information about the Box and Whisker Plot.



Further statistical testing is required to distinguish between these two hypotheses. The two hypotheses
also suggest different policy responses. One implies a policy to encourage pilots to get more hours more
quickly. The other hypothesis implies that there needs to be a better way to identify poor pilots and
remove them from the population.

The medians of a continuous variable separated by groups can be compared using what is called the
Kruskal-Wallis rank test.44

Table 64 reports the results of a Kruskal-Wallis test on pilot hours in the involved make and model. The
test statistic indicates that the four severity categories are jointly different from each other. However,
the pairwise comparisons indicate that no two groups can be considered different from each other (note
that a stricter criterion has been used to determine significance given the multiple comparison issue
noted in Appendix C.3).

Table 64 – Kruskal-Wallis Test Results for Pilot Hours in Make and Model

A B C D

Number of Observations 34 40 1,107 1,914

Mean Rank
1,229.0

7
1,310.5

3
1,591.2

0
1,534.6

4

 

In Figure 13 categories A and B appear similar as do categories C and D. Grouping the categories in this
manner produce a dichotomized variable, which can be easier to analyze; some of the techniques in
Section 4 rely on this dichotomous nature. On the other hand, grouping categories together causes a
loss of information. In this case, it is no longer possible to distinguish between conflict and non-conflict
events. Thus, while Table 65 presents the results of such a dichotomous grouping, further investigation
into the differences between categories (especially categories C and D) is warranted. 

Table 65: Kruskal-Wallis Test Results for Pilot Hours in Make and Model, Severe versus Non-Severe

Not
Severe

Severe

Number of Observations 3021 1554.73

Mean Rank 74 1273.10

 

44 See Appendix C.3 for more information about Kruskal-Wallis tests.



3.3.3. Airport Characteristics

This information describes the characteristics of the airport at which the incident occurred. In general,
this  information will  stay  the same from incident  to  incident  at  the same airport 45 so  most  of  the
interesting variation in these variables is between airports. The conclusions are therefore more useful
when comparing different types of airports.

Special Procedures
(ATQA OE)

This variable indicates if special procedures were in effect at the time of the incident. Figure 14 presents
the distribution of this variable.

45 Some variables do vary at an incident level or across time and will be noted accordingly.
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Special Procedures in Place

Figure 14 – Distribution of Special Procedures in Place

Table 66 and Table 67 reports the breakdown of this variable by severity and the results of Fisher’s Exact
test. Note that this variable can only be examined among OE incidents. The test statistic indicates that
special procedures have no effect on the severity of an incident. While there is no impact on severity, no
information can be gleaned about the impact on frequency of incursions while special procedures are in
effect.

Table 66 – Observed Distribution of Special Procedures in Place by Severity

A B C D Total

No 39 36
75

6
96 927

Yes 9 3 88 6 106

Total 48 39 84
4

102 1,033

Table 67 – Expected Distribution of Special Procedures in Place by Severity

A B C D Total

No 43 35 757 92 927



A B C D Total

Yes 5 4 87 10 106

Total 48 39 844 102 1,033

Traffic Complexity Code
(ATQA OE)

This variable indicates the complexity of traffic at the time of the incident on a five-point scale. This
variable originates from the ATQA OE database and only applies to OE incidents. Figure 15 presents the
distribution  of  hourly  ops  by  complexity  code.  Higher  complexity  is  associated  with  higher  hourly
operations.  Recall  that  hourly  operations  are  not  entirely  accurate  and  the  extreme  outliers  likely
represent data problems rather than actual observations. Regardless, the graph shows a distinct trend in
median operations by complexity level. However, the degree to which the distributions overlap in the
middle categories suggests that the definition of complexity may not be entirely clear in that region (or
at least not entirely defined by hourly operations). 

The  positive  correlation  between  complexity  code  and  hourly  operations  is  not  visible  for  OEP  35
airports. There is a slight trend in median hourly operations, however the overlap between categories is
much more pronounced. It  is also helpful to keep these values in mind when examining the results
presented below.
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Figure 15 – Distribution of Hourly Operations by Complexity Code, OEP 35 versus Non-OEP 35
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Figure 16 – Distribution of Traffic Complexity Code

Figure 16 presents  the overall  distribution for complexity  code.  Table  68 and Table  69 present the
distribution of responses by severity category and the results of a Chi-Squared test.

Table 68 – Observed Distribution of Traffic Complexity by Severity

A B C D Total

Low 11 8 250 65 334

Low-Mid 3 8 160 17 188

Average 22 14 248 17 301

Average-High 7 7 144 2 160

High 5 2 42 1 50

Total 48 39 844 102 1,033

Chi2 score: 70.79

Degrees of Freedom: 12

P-value: 0.00

Table 69 – Expected Distribution of Traffic Complexity by Severity

A B C D Total

Low 16 13 273 33 334

Low-Mid 9 7 154 19 188

Average 14 11 246 30 301

Average-High 7 6 131 16 160

High 2 2 41 5 50

Total 48 39 844 102 1,033

It appears that category D incidents are observed more than expected for low complexity, while the
conflict  events  are  observed  more  frequently  than  expected  for  average  complexity.  Category  C
incursions appear more often than expected for all levels of complexity except the lowest. This suggests
that increased complexity is associated with increased severity.



There  is  a  variety  of  other  problems  associated  with  the  interpretation  of  this  variable.  First  and
foremost, this is a purely subjective measure. The reporting form offers no guidance on what constitutes
“average” or “high” complexity so interpretations of “high” complexity may differ person-to-person or
day-to-day.  Secondly,  due  to  the  lack  of  guidance,  the  measure  is  poorly  calibrated.  For  example,
“average complexity” may refer to what is average for a given tower,  average for a time of day, or
average across the entire  NAS.  Thus,  even though someone may report  “average” complexity,  it  is
difficult  to  tell  what  the  comparison  is  (i.e.,  “average”  relative  to  what?).  Thirdly,  without  normal
operations it is difficult to discern the true impact of this variable; that is, it is possible that incursions
themselves are more likely in high complexity times even if it does not affect the distribution of severity.
It is possible that high complexity occurs twice as often for incursion events as for normal operations.
Nevertheless,  the  results  in  Table  68  indicate  that  there  is  a  relationship  between complexity  and
incident severity.

Factors leading to Traffic Complexity
(ATQA OE)

This is a set of variables describing the factors leading to the traffic complexity ranking given in the
previous variable. As with Traffic Complexity Code, it only applies to OE incidents. Figure 17 provides the
frequency of yes and no by each factor, as well as the number of missing values.
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Figure 17 – Frequency of Factors Leading to Traffic Complexity

In many of the cases,  it  is  unclear how these factors may interact with traffic complexity, let alone
severity. For example, “Experience” may indicate a lack of experience or that the controller’s higher



level of experience reduced the complexity. Additionally, the quality of the data is called into question as
the flag for “N/A” is indicated alongside other factors. No test statistics are reported for these variables
and any interpretation of them is likely erroneous. They are reported here to bring to light the problems
in the data that prevent additional analysis.

Part 139 Airport Status
(Runway Incursion Database)

This variable indicates whether the airport at which the incursion happened is categorized as a Part 139
airport.46 Table  70  and  Table  71  present  the  distribution  of  this  variable  by  severity.  Note  that  a
significant Chi-Squared statistic is also reported indicating some relationship between the severity of the
event  and Part  139 statistics.  This  is  likely due to the higher traffic  at  Part  139 airports  in  general
compared to non-Part 139 airports. Figure 18 presents the overall distribution of this variable. 

Table 72 and Table 73 report the same results, but limited to only conflict events (categories A through
C).  After removing category D events from the comparison,  the significant relationship is  no longer
detected, indicating that the result seen in Table 70 is likely driven by the disparity between conflict and
non-conflict  events,  which is  itself  based on the activity  level  of  the airport,  rather  than on a  real
relationship with severity.

46Part 139 status indicates that the airport serves scheduled and unscheduled service with more than 9 passenger
seats on a regular basis. Source: http://www.faa.gov/airports/airport_safety/part139_cert/?p1=what
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Figure 18 – Distribution of Part 139 Status

Table 70 – Observed Distribution of Part 139 Status by Severity

A B C D Total

No 37 37 737 1,348 2,159

Yes 95 108 2,571 3,879 6,653

Total 132 145 3,308 5,227 8,812

Table 71 – Expected Distribution of Part 139 Status by Severity

A B C D Total

No 32 36 810 1,281 2,159

Yes 100 109 2,498 3,946 6,653



A B C D Total

Total 132 145 3,308 5,227 8,812

Table 72 – Observed Distribution of Part 139 Status by Severity, Conflict Only

A B C Total

No 37 37 737 811

Yes 95 108 2,571 2,774

Total 132 145 3,308 3,585

Table 73 – Expected Distribution of Part 139 Status by Severity, Conflict Only

A B C Total

No 30 33 748 811

Yes 102 112 2,560 2,774

Total 132 145 3,308 3,585

Table 74 and Table 75 reports the distribution of incident type by Part 139 status. The Chi-Squared
statistic  indicates  that  there  is  also  a  relationship  between incident  type  and  Part  139  status.  The
expected values indicate that this is likely due to an overrepresentation of OE and PD incidents and a
corresponding underrepresentation of V/PD incidents among Part 139 airports. Table 76 and Table 77
reports the same information, excluding V/PDs. The reported Chi-Squared statistic indicates that the
relationship  detected  in  Table  74  is  observed  again.  Here,  it  appears  that  PDs  are  observed  less
frequently than expected at Part 139 Airports and the opposite is true for OE incidents. It is unclear why
this disparity exists among incident types; further research in the prevalence of different incident types
by Part 139 status is required to understand what is reported in Table 74 and Table 76.



Table 74 – Observed Distribution of Part 139 Status by Incident Type

OE PD V/PD Total

No 186 1,197 776 2,159

Yes 1,082 4,105 1,466 6,653

Total 1,268 5,302 2,242 8,812

Table 75 – Expected Distribution of Part 139 Status by Incident Type

OE PD V/PD Total

No 311 1,299 549 2,159

Yes 957 4,003 1,693 6,653

Total 1,268 5,302 2,242 8,812

Table 76 – Observed Distribution of Part 139 Status by Incident Type, OE & PD

OE PD Total

No 186 1,197 1,383

Yes 1,082 4,105 5,187

Total 1,268 5,302 6,570

Chi2 score: 38.50

Degrees of Freedom: 1

Table 77 – Expected Distribution of Part 139 Status by Incident Type, OE & PD

OE PD Total

No 267 1,116 1,383



OE PD Total

Yes 1,001 4,186 5,187

Total 1,268 5,302 6,570

Table 70 and Table 72 addressed the issue of severity and Part 139 status. The results presented in those
two tables  indicate  that  any relationship  between Part  139 status  and severity  is  a  product  of  the
conflict/non-conflict  event  dynamic.  Therefore,  due  to  the  loss  of  information  from  combining  the
categories, it is unlikely that an effect would be detected related to severity in the logit framework.
Table 74 and Table 76 addressed the issue of incident type and Part 139 status. The results presented in
Table 78 indicate that there is a relationship with incident type and that incidents at Part 139 airports
have twice the odds of being an OE as non-Part 139 airports. All incursions, and thus airports, included
in  this  analysis  are  controlled.  It  is  possible  that  the disparity  between Part  139 and non-Part  139
airports  may  be  related  to  the  differing  pilot  populations  between airport  types.  As  noted  earlier,
further research into why OE incidents are more common at Part 139 airports is warranted. 

Table 78 – Logit Estimate of Impact on Incident Type, Part 139 Status

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

Part 139 Status 2.06 .172 0.00 1.75 2.43

OEP 35 Airport Status
(Runway Incursion Database)

This variable indicates whether or not the airport at which the incursion occurred is considered part of
the OEP 35, the 35 busiest airports in the country in 2000. Though OEP 35 is used in this analysis, the
same results hold for the Core 30, the 30 airports of interest to the FAA in 2011, a designation the FAA is
using going forward. Figure 19 presents the overall distribution of OEP 35 status.
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Figure 19 – Distribution of OEP 35 Status

Table 79 presents the estimated effect on the odds of being severe if an incident occurs at an OEP 35
airport.

Table 79 – Logit Estimate of Impact on Severity, OEP 35 Status

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

OEP 35 1.40 .189 0.01 1.07 1.82

The increase in the odds of a severe incident is moderate compared to some of the other variables
examined. Given that OEP 35 airports are extremely busy, it is possible that this relationship is merely a
product  of  the  higher  likelihood  of  conflict  events  at  a  busy  airport.  Table  80  presents  the  same
estimate,  excluding  category  D  incursions.  Not  surprisingly,  the  previous  relationship  is  now  not
detected, indicating that OEP 35 status is likely a better indicator of conflict versus non-conflict rather
than severity.

Table 80 – Logit Estimate of Impact on Severity, OEP 35 Status, Conflict Only

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

OEP 35 .880 .122 0.36 .671 1.15



Table 81 presents a look at the impact on the odds of being an OE. Interestingly, the impact on OEs is
fairly strong, increasing the odds by around 170%. Given the relationship between OE incidents and
severity, it is prudent to check if the impact on severity is an independent effect. That is, given that OEP
35 incidents are more likely to be OEs and that OEs are also likely to be more severe, it is not surprising
that OEP 35 incidents are more severe.  Table 82 presents a multivariate logit that controls  for this
relationship and examines the impact on severity.

Table 81 – Logit Estimate of Impact on Incident Type, OEP 35 Status

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

OEP 35 2.72 .175 0.00 2.40 3.09

Table 82 – Logit Estimate of Impact on Severity, OEP 35 Status and Incident Type

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

OEP 35 1.53 .262 0.01 1.09 2.14

OE Incident 4.36 .678 0.00 3.21 5.91

OEP 35 & OE Incident .446 .126 0.00 .256 .777

The results indicate that not only is there an independent impact on severity, there is an interaction
between OEP 35 status and incident type. The results indicate that incidents at OEP 35 airports tend to
be more severe, OE incidents tend to be more severe, but OE incidents at OEP 35 airports are less severe
than the combination would suggest – there is a mitigating factor in the interaction of OEP 35 status and
incident  type.  Table  83  presents  the  same  results  but  excludes  category  D  incidents.  Here,  the
independent OEP 35 impact is no longer detected, but the interaction is still detected – though just
barely.  It  is  possible  that  this  mitigating  factor  is  related  to  controller  experience  or  skill  (broadly
defined). That hypothesis would indicate that only the most skilled controllers are at the OEP 35 airports
and they make less severe mistakes than their non-OEP 35 counterparts. That is only one hypothesis and
is difficult to test. A deeper understanding of the differences in controllers between OEP 35 airports and
non-OEP 35 airports is required to formulate better hypotheses and to test them adequately. 

Table 83 – Logit Estimate of Impact on Severity, OEP 35 Status and Incident Type, Conflict Only

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

OEP 35 1.05 .183 0.79 .743 1.48

OE Incident 1.71 .271 0.00 1.25 2.33

OEP 35 & OE Incident .553 .158 0.04 .315 .969



Land and Hold Short Capability at Airport
(Airport Database)

This variable indicates if an airport is capable of LAHSO operations. This is in contrast to the variable
described previously in Table 33, which indicates if one of the aircraft involved was performing a LAHSO.
Figure 20 contains the overall distribution for this variable. 
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Figure 20 – Distribution of LAHSO Capability at Airport

Table 84 and Table 85 present the distribution by incident type. Table 84 indicates that OE and PD
incidents are observed more frequently than expected with a corresponding underrepresentation of
V/PD incidents. This relationship is found to be statistically significant. It may be possible that LAHSO
capability is correlated with other factors such as Part 139 status and overall traffic levels. Thus, it may
be that LAHSO capability is correlated with something that creates this disparity in incident types, rather
than LAHSO capability being the driving factor behind the disparity.

Table 84 – Observed Distribution of LAHSO Capability by Incident Type

OE PD V/PD Total

No 391 2,170 1,094 3,655

Yes 877 3,128 1,145 5,150

Total 1,268 5,298 2,239 8,805



Table 85 – Expected Distribution of LAHSO Capability by Incident Type

OE PD V/PD Total

No 526 2,199 929 3,655

Yes 742 3,099 1,310 5,150

Total 1,268 5,298 2,239 8,805

Table 86 – Correlation of LAHSO Capability and Other Airport Characteristics

Correlation

Part 139 Status 0.5278

OEP 35 Status 0.2291

Daily Operations 0.1151

Table  86  presents  the  correlation  of  LAHSO  Capability  with  other  relevant  airport  characteristics.
Interestingly, it is not highly correlated with any of these factors. The relationships seen in Table 84 and
Table 85 cannot be attributed to that correlation. Further research is warranted to better understand
how LAHSO capability  is  correlated  with  incident  type. Table  84  indicated a  significant  relationship
between incident type and LAHSO capability at an airport, while Table 87 provides an estimate of the
impact LAHSO capability has on the odds of being an OE (i.e., an OE has odds 71% higher under LAHSO
capability).

Table 87 – Logit Estimate of Impact on Incident Type, Land and Hold Short Capability at Airport

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

LAHSO Capability 1.71 .111 0.00 1.51 1.95

Table 88 and Table 89 present the distribution by severity. There is no relationship between severity and
LAHSO  capability,  as  indicated  by  the  insignificant  Chi-Squared  statistic.  Combining  this  result  with
previous results raises some interesting questions. The logic chain is as follows:

1. The results in Table 84 indicate that OEs are more common than expected at LAHSO capable
airports. 



2. As seen in Table 1 there is a relationship between incident type and severity, with OEs tending
to be more severe. 

3. These two results combined might indicate that LAHSO capable airports should be more severe,
but that does not seem to be the case.

Further research into severity, incident type, and LAHSO capability might help clarify this surprising (lack
of) relationship.

Table 88 – Observed Distribution of LAHSO Capability by Severity

A B C D Total

No 56 65 1,333 2,201 3,655

Yes 76 80 1,975 3,019 5,150

Total 132 145 3,308 5,220 8,805

Table 89 – Expected Distribution of LAHSO Capability by Severity

A B C D Total

No 55 60 1,373 2,167 3,655

Yes 77 85 1,935 3,053 5,150

Total 132 145 3,308 5,220 8,805

Daily Operations
(OPSNET)

As noted in Section 3.1.6, operations are available on a variety of time scales: hourly, daily, and annually.
The ideal operations measure is both granular and accurate. The hourly counts provided by ETMSC are
the most granular option available, but due to the way VFR operations are allocated to hours of the day,
the accuracy of the data is questionable, at best. In fact, the allocation procedure indicates that some
incursions happened in hours with zero operations, which is extremely unlikely. Yearly operations are
much more stable, but do not offer the granularity that may be important as operations vary throughout
the  year.  Daily  operations  offer  a  good  mix  of  granularity  and  accuracy.  Figure  21  presents  the
distribution of this variable overall, and by severity. Table 90 presents the median daily operations by
severity while Table 91 presents the results of a Kruskal-Wallis test.
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Figure 21 – Distribution of Daily Operations

Table 90 – Percentiles of Daily Operations

10th 25th 50th 75th 90th

A 202 408 695.5 1,169 1,743

B 295.5 410 673.5 1,071.5 1,889.5

C 230 371 654 1,161 1,636

D 145 257 451 770 1,225

Overall 170 298 530.5 936 1,412



Table 91 – Kruskal-Wallis Test Results for Daily Operations

A B C D

Number of Observations 114 120 2978 4422

Mean Rank 4485.7
9

4573.2
5

4385.4
4

3397.2
9

The results of the Kruskal-Wallis indicate that daily operations jointly differ across severity categories.
Category D appears to have many fewer median daily operations than any of the other categories. The
pairwise  comparison  tests  indicate  that  categories  A,  B,  and  C  can  all  be  distinguished  from  D
statistically.  However,  categories A, B,  and C are pairwise indistinguishable. This indicates that daily
operations are likely a better determinant of conflict versus non-conflict event rather than contributing
to severity. 

Percent of Operations that are Air Carrier / Air Transport
(Airport Database)

This variable indicates the average percent of traffic at an airport that is categorized as Air Carrier or Air
Transport.47 Figure 22 presents the distribution of this variable by severity, while Table 92 presents the
percentiles of the distribution. Table 93 reports the results of a Kruskal-Wallis test by severity.

47 This data element was contained in the database of airport characteristics the Volpe Center received from the
University of Virginia (via FAA). It appears that the values are derived from OPSNET, however it is unclear over
what time span this average is calculated.
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Table 92 – Percentiles of AC/AT Percent of Operations by Severity

10th 25th 50th 75th 90th

A .01 .06 .30 .83 .985

B .02 .08 .32 .91 .96

C .02 .08 .40 .94 .98

D .02 .07 .31 .72 .95

Overall .02 .08 .34 .83 .96

Table 93 – Kruskal-Wallis Test Results for AC/AT Percent of Operations

A B C D

Number of Observations 130 144 3299 5178

Mean Rank
4261.0

7
4419.6

4
4725.5

0
4155.0

0



Interestingly, all severity levels appear to have similar medians, with the values for category C tending to
be a bit higher. Additionally,  the interquartile range for category D incursion appears to be smaller,
indicating  a  more  narrowly  distributed  variable  (especially  given  the  overwhelming  prevalence  of
category D). The result of the Kruskal-Wallis test supports the conclusion that the categories are jointly
different, but offers little information for the pairwise comparisons. Category C can be distinguished
from category D, but no other pairs are significantly different. This may indicate that high percentage
AC/AT airports are also very busy and are thus unlikely to commit an error in the absence of another
aircraft. Further exploration will need to control for the operations at the given airport to disentangle
the two effects.

Table 94 and Table 95 examine the percent of operations that are AC/AT by incident type. All three
incident types appear to have very different distributions. OE incidents have a higher median percentage
while V/PD incidents have the lowest. The results of the Kruskal-Wallis test corroborate this, indicating
that the three incident types are jointly different as well as all pairwise different from each other. This
suggests  that  policy  interventions  need to  account  for  traffic  mix  at  an airport.  That  is,  any  policy
intervention targeted predominately at one kind of airport will have differing impacts on severity and
incident types across airports. 

Table 94 – Percentiles of AC/AT Percent of Operations by Incident Type

10th 25th 50th 75th 90th

OE .04 .18 .66 .95 .99

PD .02 .08 .34 .77 .95

V/PD .01 .04 .21 .78 .96

Overall .02 .08 .34 .83 .96

Table 95 – Results of Kruskal-Wallis Test for AC/AT Percent of Operations by Incident Type

OE PD V/PD

Number of Observations 1267 5250 2234

Mean Rank
5393.2

7
4307.1

9
3960.7

6



Chi2 score: 269.68

Degrees of Freedom: 2



Number of Runway Intersections
(Airport Database)

This variable measures the number of runway intersections at the airport where the incursion occurred.
Figure 23 and Table 96 gives the distribution of this variable. Table 97 gives the results of a Kruskal-
Wallis test by severity.
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Figure 23 – Distribution of Number of Runway Intersections

Table 96 – Percentiles of Number of Runway Intersections by Severity

10th 25th 50th 75th 90th

A 0 0 1 2 4

B 0 0 1 2 4

C 0 0 1 2 4

D 0 0 1 2 3

Overall 0 0 1 2 3



Table 97 – Kruskal-Wallis Test Results for Number of Runway Intersections

A B C D

Number of Observations 132 145 3308 5226

Mean Rank 4725.5
6

4836.2
7

4563.5
8

4286.2
4

On a pairwise basis, only categories C and D can be considered different. Table 98 presents the results of
a Kruskal-Wallis  test,  examining conflict only events.  The three severity categories can no longer be
considered jointly different. This indicates that number of runway intersections is helpful for identifying
conflict or non-conflict events but not severity among conflict events.

Table 98 – Kruskal-Wallis Test Results for Number of Runway Intersections, Conflict Only

A B C

Number of Observations 132 145 3308

Mean Rank 1850.9
1

1892.8
1

1786.3
1

Number of Runways
(Airport Database)

This variable indicates the total number of runways at the airport where the incident occurred. Note
that this  is  not the number of runways in operation at  the time of the incident. A measure of  the
number  of  operating  runways was  unavailable  and future  research may want  to  explore  how that
impacts severity. Figure 24 and Table 99 present the distribution of the number of runways. Table 100
presents the results of a Kruskal-Wallis test by severity.

The results of the Kruskal-Wallis test indicate that there is a difference in number of runways between
the severity categories. Examining the distribution indicates that category D appears the most different



in terms of percentiles. Additionally, only categories C and D can be considered pairwise different. It is
likely  that  the  observed  relationship  will  be  no  longer  significant  once  category  D  incursions  are
excluded from the analysis (controlling for the conflict versus non-conflict dynamic).
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Table 99 – Percentiles of Number of Runways by Severity

10th 25th 50th 75th 90th

A 2 2 3 4 5

B 2 2 3 4 5

C 2 2 3 4 5

D 2 2 3 3 4

Overall 2 2 3 4 4

Table 100 – Kruskal-Wallis Test Results for Number of Runways

A B C D

Number of Observations 132 145 3308 5226



A B C D

Mean Rank
4498.2

4
4637.7

0
7442.3

1
4166.2

6

Table 101 presents the results of a Kruskal-Wallis test examining conflict events only. As expected, the
relationship between number of runways and severity is no longer significant. It is likely that number of
runways is a proxy for overall traffic levels and likelihood of two planes conflicting. A similar argument
may hold for the number of runway intersections.

Table 101 – Kruskal-Wallis Test Results for Number of Runways, Conflict Only

A B C

Number of Observations 132 145 3308

Mean Rank
1691.5

1
1742.2

7
1799.2

7

Number of Hotspots
(Airport Database)

This variable indicates the number of hotspots identified at an airport. A hotspot is defined as “a 
location on an airport movement area with a history of potential risk of collision or runway incursion, 
and where heightened attention by pilots and drivers is necessary.”48 Table 102 and Figure 25 present 
the distribution of this variable while Table 103 presents the results of a Kruskal-Wallis test. 

The severity categories are jointly different while only categories C and D can be considered pairwise 
different. As with total runways and runway intersections, it is instructive to examine conflict events 
only. The evidence is weaker for conflict only events, as seen in Table 104. However, the change is not as
dramatic as for number of runways or number of runway intersections. Thus, number of hotspots 

48 Federal Aviation Administration (2012). http://www.faa.gov/airports/runway_safety/hotspots/hotspots_list/

http://www.faa.gov/airports/runway_safety/hotspots/hotspots_list/


appears to be most useful in identifying conflict versus non-conflict events but may also provide some 
additional information regarding severity for conflict events.
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Table 102 – Percentiles of Number Hotspots by Severity

10th 25th 50th 75th 90th

A 0 0 1 3 4

B 0 0 1 3 5

C 0 0 2 4 5

D 0 0 1 3 4

Overall 0 0 1 3 5



Table 103 – Kruskal-Wallis Test Results for Number of Hotspots

A B C D

Number of Observations 132 145 3308 5226

Mean Rank 4445.2
5

4354.0
9

4746.7
8

4190.7
4

Table 104 – Kruskal-Wallis Test Results for Number of Hotspots, Conflict Only

A B C

Number of Observations 132 145 3308

Mean Rank
1679.1

8
1640.7

2
1804.2

2

3.3.4. Radar

These variables are derived from the ATQA OE dataset. Correspondingly, they can only be analyzed for
OE incidents.  They  describe  the radar  systems available  to  the  controller  at  the airport  where the
incident took place. In some instances the radar variables have been combined to cover multiple similar
versions of a system. Where this occurs, the specific systems included will be noted. Brief definitions of
the different radar systems examined follow:49

 STARS: STARS (standard terminal automation replacement system) “is a new terminal air traffic
control  system  that  uses  modern,  commercial,  open  architecture  computing  equipment  to
replace existing [ARTS] systems."

 ASDE: ASDE (airport surface detection equipment) is a radar system that tracks ground based
vehicles and aircraft. A variety of ASDE systems have been installed throughout the years. ASDE-
X, the latest iteration, attempts to uses a slightly different set of hardware to achieve a similar
effect to that of previous ASDE systems.

 ARTS:  ARTS  (Automated  Radar  Terminal  System)  encompasses  several  versions  of  a  similar
system.  At its  core,  ARTS is  a  radar processing  system to associate  data  with  specific  radar

49 Nolan (2011).



tracks. ARTS-III  actually represents an older version of the technology. ARTS-II represents an
attempt to produce a lower cost version of the ARTS-III system.



STARS
(ATQA OE)

Table 105 and Table 106 present the observed and expected distributions of STARS by severity. Fisher’s
exact test indicates that there is a relationship between severity and the availability of the STARS radar
system. Categories A, B and D appear underrepresented while Category C is over represented.

Table 105 – Observed Distribution of STARS by Severity

A B C D Total

No 39 34 617 61 751

Yes 9 5 227 41 282

Total 48 39 844 102 1,033

Table 106 – Expected Distribution of STARS by Severity

A B C D Total

No 35 28 614 74 751

Yes 13 11 230 28 282

Total 48 39 844 102 1,033

To better understand how this variable impacts severity, category D incursions are excluded from the
following tables (Table 107 and Table 108). This eliminates the conflict versus non-conflict dynamic that
appears in Table 105. As with the entire range of severity, categories A and B are underrepresented
while category C is overrepresented. However, the relationship between STARS and severity is weaker.
This  indicates  that  some of  the  relationship  seen  in  Table  105  can  be  attributed  to  discriminating
between conflict and non-conflict. This may be a product of where STARS is deployed; that is, STARS
may  be  deployed  where  the  baseline  rate  for  conflict  events  is  higher  regardless  of  its  impact  on
severity.  Nevertheless there appears to be weak evidence suggesting that the presence of STARS is
associated with lower severity incidents. 

Table 107 – Observed Distribution of STARS by Severity, Conflict Only

A B C Total

No 39 34 617 690

Yes 9 5 227 241



A B C Total

Total 48 39 844 931

Table 108 – Expected Distribution of STARS by Severity, Conflict Only

A B C Total

No 36 29 626 690

Yes 12 10 218 241

Total 48 39 844 931

ASDE
(ATQA OE)

It is important to acknowledge that this ASDE variable does not discriminate between different versions
of the ASDE system. That is, this variable indicates the presence of ASDE-3 or ASDE-X. This is due to how
the information was ended in the Runway Incursion Database. Regardless, Table 109 and Table 110
present the distribution of this variable. Interestingly, there appears to be a strong relationship between
severity and the presence of ASDE. Categories A, B, and D are underrepresented while category C is
overrepresented. This is likely a product of how the ASDE systems were deployed. ASDE is deployed at
major airports, where a non-conflict event (category D) is less likely. Therefore, it is instructive to look at
the conflict only distribution as presented in Table 111 and Table 112.

Table 109 – Observed Distribution of ASDE by Severity

A B C D Total

No 35 32 535 83 685

Yes 13 7 309 19 348

Total 48 39 844 102 1,033

Table 110 – Expected Distribution of ASDE by Severity

A B C D Total

No 32 26 560 68 685



A B C D Total

Yes 16 13 284 34 348

Total 48 39 844 102 1,033

The  conflict  only  distribution  indicates  a  similar  pattern  to  the  overall  distribution.  There  is  some
evidence that ASDE is associated with lower severity events (in this case, category C incursions). This
indicates that the lower than expected number of D incursions seen in Table 109 is likely a product of
the distribution of ASDE systems with respect to airports.

Table 111 – Observed Distribution of ASDE by Severity, Conflict Only

A B C Total

No 35 32 535 602

Yes 13 7 309 329

Total 48 39 844 931

Table 112 – Expected Distribution of ASDE by Severity, Conflict Only

A B C Total

No 31 25 546 602

Yes 17 14 298 329

Total 48 39 844 931

Given  that  both ASDE  and  STARS  appear  to  reduce the severity  of  runway  incursions,  it  would be
interesting to investigate whether or not there is any synergy between STARS and ASDE. The logit results
presented in Table 113 indicate that STARS and ASDE are both associated with lower severity incidents,
but there is no synergy between the systems. That is, the effect of STARS and ASDE is exactly the sum of
its  parts.  Note,  however,  that  the  odds  ratios  for  STARS  and  ASDE  in  isolation  are  not  precisely
estimated;  this  is  likely  a  product  of  including  the  interaction  term  in  the  estimation.  Though  the
evidence for the isolated impact of ASDE or STARS is weaker in this logit model, combining these results
with those from the Fisher’s Exact test indicates that there is evidence that these radar systems reduce
severity. 



Table 113 – Logit Estimates of Impact on Severity, ASDE and STARS

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

STARS 0.59 0.18 0.08 0.33 1.06

ASDE 0.50 0.18 0.06 0.24 1.03

STARS & ASDE 1.15 0.74 0.83 0.32 4.07

ARTS II
(ATQA OE)

As mentioned previously, ARTS II represents a lower cost version of the ARTS III system. This variable
indicates if any version of ARTS II was available to the controller at the time of the incident. Table 114
and Table 115 present the observed and expected distribution. There is no indication of any relationship
between the presents of ARTS II and severity. As the ARTS systems are focused on airborne traffic, this is
not an unexpected result.

Table 114 – Observed Distribution of ARTS II by Severity

A B C D Total

No 40 33 733 88 894

Yes 8 6 111 14 139

Total 48 39 844 102 1,033

Table 115 – Expected Distribution of ARTS II by Severity

A B C D Total

No 6 5 114 14 139

Yes 48 39 844 102 1,033

Total 42 34 730 88 894

ARTS III
(ATQA OE)

The  ARTS  III  system  is  the  more  feature  rich  and  expensive  version  of  the  ARTS  systems  under
consideration. This variable indicates whether ARTS III was available to the controller at the time of the
incident.  Table 116 and Table 117 present the observed and expected distribution of this variable. 



Table 116 – Observed Distribution of ARTS III by Severity

A B C D Total

No 27 25 527 78 657

Yes 21 14 317 24 376

Total 48 39 844 102 1,033

Table 117 – Expected Distribution of ARTS III by Severity

A B C D Total

No 31 25 537 65 657

Yes 17 14 307 37 376

Total 48 39 844 102 1,033

Categories A and C appear over represented while categories B and D appear under represented. It is
important to reiterate that the Fisher’s Exact test indicates that there is some relationship between the
two variables (i.e., there is systematic relationship between rows and columns in the table). It does not
test for any particular direction or even if that relationship is consistent. For a better understanding of
how ARTS III may impact severity, category D incursions can be excluded, removing the conflict versus
non-conflict dynamic.

Table 118 and Table 119 examine ARTS III in terms of conflict events only. The relationship seen in Table
116 is no longer present. As with ASDE it  is possible that this relationship is due to how ARTS III  is
deployed – busier airports received the expensive ARTS III system.

Table 118 – Observed Distribution of ARTS III by Severity, Conflict Only

A B C Total

No 27 25 527 579

Yes 21 14 317 352

Total 48 39 844 931



Table 119 – Expected Distribution of ARTS III by Severity, Conflict Only

A B C Total

No 30 24 525 579

Yes 18 15 319 352

Total 48 39 844 931

3.3.5. Controller Variables

These variables originate from the ATQA OE database and therefore only pertain to OE incidents. The
variables in this section describe the controller or controller’s situation at the time of the incident.

Employee Alerted to Incident By
(ATQA OE)

This variable indicates who alerted the controller to the incident. Recall that this is coded only for OE
incidents; so in all cases the controller was at fault, though the incident may be first identified by a
different party. The overall frequency of each response is presented in Figure 26. Table 120 and Table
121 present the distribution as well as the results of a Chi-Squared test.
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Employee Alerted to Incident By

Figure 26 – Frequency of Categories of Employee Alerted to Incident By

Table 120 – Observed Distribution of Employee Alerted to Incident By, by Severity

A B C D Total

Conflict Alert 0 0 3 0 3

MSAW_EMSAW 0 0 1 0 1

Self-identified 12 10 296 33 351

Facility personnel 8 12 284 56 360

Pilot 22 11 158 1 192

Other 6 6 96 12 120

Total 48 39 838 102 1,027



Table 121 – Expected Distribution of Employee Alerted to Incident By, by Severity

A B C D Total

Conflict Alert 0 0 2 0 3

MSAW_EMSAW 0 0 1 0 1

Self-identified 16 13 286 35 351

Facility personnel 17 14 294 36 360

Pilot 9 7 157 19 192

Other 6 5 98 12 120

Total 48 39 838 102 1,027

The majority of incidents appear to be identified by persons other than the controller.  Additionally,
incidents identified by pilots tend to be more severe than expected. All categories except category D
incidents are higher than expected (with category A being twice as high as expected). The opposite
pattern  holds  for  incidents  identified  by  other  facility  personnel.  The  pattern  is  less  clear  for  self-
identified incidents, where categories A, B and D are lower than expected and category C is observed
more frequently than expected.  The deviations from the expected values are much higher for  pilot
identified incidents than for either self-identified or those identified by other personnel.

Table 122 presents the results of a simple logit focusing on OE incidents identified by pilots.

Table 122 – Logit Estimate of Impact on Severity, Employee Alerted to Incident By, Conflict Only

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Employee Alerted to 
Incident By Pilot

3.00 .713 0.00 1.88 4.78

The results indicate that the odds of an OE incident being severe if it is identified by a pilot are 3 times
higher than incidents not identified by pilots. This is consistent with the information contained in Table
120.

One possible explanation for this pattern is that, due to their proximity, pilots are able to identify the
most serious incidents. This would cause the increase in pilot-reported serious OE incidents. This trend
may not be unique to OE incidents, but there is no counterpart variable describing PD incidents. Further
research is warranted to better understand how severity and who identifies the incident are related.

Controller Time on Shift
(ATQA OE)



This variable tracks the time the controller was on shift before the incident occurred. Again, this is only
available for OE incidents. Figure 27 and Table 123 present the distribution of this variable while Table
124 presents the results of Kruskal-Wallis test by severity category.

0
50

10
0

F
re

qu
en

cy

0 500 1000 1500
Time on Shift (minutes)

0
50

0
1,

0
00

1,
5

00
T

im
e

 o
n

 S
h

ift
 (

m
in

u
te

s)

A B C D

Bin Width: 60 min

Time on Shift

Figure 27 – Distribution of Time on Shift

Table 123 – Percentiles of Time on Shift

10th 25th 50th 75th 90th

A 36 96 293 392 462

B 68 150 234 337 424

C 46 113 226 355 427

D 48 109 220 308 431

Overall 46 115 227 354 427

Table 124 – Kruskal-Wallis Test Results for Time on Shift

A B C D

Number of Observations 43 37 685 70

Mean Rank 456.26 437.08 415.96 404.35



A B C D

The overall distribution is confined mostly before 500 minutes. This is not entirely surprising, as shift
length is regulated. However, it is worth noticing the observations above approximately 500 minutes.
These observations are certainly outliers and may be misreported. However, the number is not large
enough to distort the distribution and, without further information, the values are certainly possible if
unlikely and so should not be excluded.

The distributions by severity level look fairly similar. This observation is borne out by the results of the
Kruskal-Wallis test that indicate no joint difference between the groups. The most obvious explanation
for this is that time on shift does not influence severity of the incident. It is possible that the frequency
of incidents might go up as time on shift  goes up.50 It  is important to note that no information on
controller shifts without incursions is available – the vast majority of shifts have no incursions. Further
investigation into the relationship between time on shift and frequency of incursion is warranted.

Controller Age
(ATQA OE)

This variable indicates the controller  age in  years.  As this  variable is  derived from ATQA, it  is  only
available for OE incidents. Table 125 and Figure 28 present the distribution of controller age while Table
126 gives the results of a Kruskal-Wallis test by severity.

50 As  a  side  note,  there  appears  to  be some evidence that  time  on  shift  may impact  event  frequency.  The
distribution of  time on shift  is  fairly  flat  for  times under  approximately  500 minutes.  If  the probability of  an
incursion happening is  independent of  time on shift,  one would  expect  a distribution that  decreases  as time
increases as not all shifts are the same length and controllers “drop out” of the distribution as shifts end.
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Figure 28 – Distribution of Controller Age

Table 125 – Percentiles of Controller Age

10th 25th 50th 75th 90th

A 31 39 45 49 52

B 33 41 46 50 58

C 31 39 44 49 53

D 27 32 43 48 54

Overall 31 38 44 50 53

Table 126 – Kruskal-Wallis Test Results for Controller Age

A B C D

Number of Observations 41 37 673 70

Mean Rank 404.22 476.26 412.76 363.54



There does not appear to be a relationship between controller age and incident severity. Controller age
is a weak proxy for controller experience. A more focused look at controller experience may reveal a
different pattern. Additionally, it is important to note that these results are in terms of severity and
nothing can be said about the frequency with which controllers of a given age commit errors.

Relevant Training in the Last Year
(ATQA OE)

This variable indicates whether the controller was involved in “relevant” training in the last year. Note
that this is a self-reported variable on the controller incident reporting form. Additionally, no guidance is
given on what constitutes relevant training. At a minimum it is assumed to be training broadly related to
runway incursions.

Table 127 – Observed Distribution of Relevant Training in Last Year by Severity

A B C D Total

No 5 7 114 12 138

Yes 39 32 592 59 722

Total 44 39 706 71 860

Table 128 – Expected Distribution of Relevant Training in Last Year by Severity

A B C D Total

No 7 6 113 11 138

Yes 37 33 593 60 722

Total 44 39 706 71 860

There does not appear to be any relationship between receiving training and severity. It is possible that
training may affect the frequency with which errors occur, but no conclusion regarding frequency can be
drawn from these results. 



Controller Workload
(ATQA OE)

Controller workload measures the number of aircraft the controller was responsible for at the time of
the incident. This is a self-reported variable on the controller error reporting form.
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Figure 29 – Distribution of Controller Workload

Table 129 – Percentiles of Controller Workload

10th 25th 50th 75th 90th

A 2 3 5 7 8

B 1 3 5 6 10

C 2 3 5 6 8

D 1 2 3 4 5

Overall 2 3 4 6 8

Table 130 – Kruskal-Wallis Test Results for Controller Workload

A B C D

Number of Observations 48 38 841 102



A B C D

Mean Rank 549.94 559.32 537.02 300.46

The test results indicate that the severity categories are jointly different in terms of controller workload.
Further,  all  categories  can  be  considered  pairwise  different  from  category  D  (no  other  pairwise
comparisons  are  significantly  different).  Table  131  presents  the  results  of  a  Kruskal-Wallis  test  for
conflict  events  only.  Once  the  conflict  versus  non-conflict  dynamic  has  been  eliminated,  controller
workload does not appear to have a different distribution by severity. Controller workload may serve as
a proxy for the overall traffic level at an airport, rather than directly impacting severity. A more focused
look at extreme controller workload levels may also reveal a different pattern (given that the overall
distributions are fairly narrow).

Table 131 – Kruskal-Wallis Test Results for Controller Workload, Conflict Only

A B C

Number of Observations 48 38 841

Mean Rank 477.02 483.99 462.35

3.3.6. Weather Variables

These variables capture the weather conditions surrounding the incident. As described previously, the
weather data originates from the METAR data archived by Plymouth University. It is then interpolated to
represent a best approximation of the conditions at the time of the incident.

Temperature
(Weather Database)



The temperature at the time of the incident is interpolated from the closest hourly readings. Figure 30
presents the overall distribution of temperature, the distribution by severity, and the distribution by
incident  type.  The  percentiles  of  the  distribution,  conditional  on  severity  and  incident  type,  are
presented in Table 132 and Table 134.
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Figure 30 – Distribution of Temperature

The overall distribution is unsurprising. This data covers approximately ten years and the 50 States, the
District of Columbia, and U.S. Territories; thus, the range seems reasonable. The overall distribution is
skewed slightly left, but not dramatically so. The distribution by severity appears fairly similar. Category
A and C incursions appear to have slightly higher median temperatures. One might anticipate that ice
(and thus cold temperatures) would have a disproportionate effect on severity, but that does not seem
to be the case. The distributions by severity also appear quite similar,  with V/PD incidents having a
slightly lower median temperature. This may be indicative of the involvement of snow removal vehicles
in  V/PD  incidents.51 To  further  test  these  apparent  differences  by  severity  and  incident  type,  two
Kruskal-Wallis tests were performed, the results of which are presented in Table 133 and Table 135.

Table 132 – Percentiles of Temperature by Severity

10th 25th 50th 75th 90th

A 36 58.35 70.7833 81 88

51 There are  81 incidents  involving snow removal  vehicles  in  the database,  63  of  which  are  V/PD incidents,
constituting approximately 3% of V/PD incidents.



10th 25th 50th 75th 90th

3

B 38.225 52 64.825 75.8 81.5833
3

C 38.3166
7

54.8 67.9333
3

79 86

D 37 52.75 66 77.4 84.65

Overall 37
53.7666

7
66.7666

7
78

85.1333
3

Table 133 – Kruskal-Wallis Test Results for Temperature by Severity

A B C D

Number of Observations 122 130 3110 4787

Mean Rank
4529.8

0
3798.5

9
4187.8

1
3997.6

3

Table 134 – Percentiles of Temperature by Incident Type

10th 25th 50th 75th 90th

OE 37.9333
3

54 67.5166
7

78.4666
7

85.2

PD 40 54.8333
3

68 78.6333
3

85.55

V/PD 32.6666
7

48.9666
7

64 75.9666
7

84

Overall 37 53.7666
7

66.7666
7

78 85.1333
3



Table 135 – Kruskal-Wallis Test Results for Temperature by Incident Type

OE PD V/PD

Number of Observations 1222 4945 1982

Mean Rank 4121.6
4

4197.3
1

3741.0
8

Degrees of Freedom: 2

The results  for  severity indicate that,  while jointly  different,  few of  the categories  can be declared
different from each other. Categories C and D are the only two categories that can be declared different.
This is partially due to the smaller sample of A and B incidents, leading to less precise estimates of their
distributions.  There does not  seem to be a trend with severity and temperature.  It  is  unclear how
temperature alone might impact severity, but temperature may be a proxy for more specific weather
phenomena,  such as  snow and ice.  While  snow and ice  may impact  severity,  it  is  possible  current
operational practices (such as reducing traffic volume) already compensate for the increased risk of a
severe incident. Further research, focusing on these particular phenomena (icy runways and snow) may
disentangle the operational effects from the weather effects.

The test by incident type indicates that the three incident types are jointly different and that V/PD
incidents  are  distinct  from  both  OE  and  PD  incidents  (OE  and  PD  incidents  are  not  able  to  be
distinguished).  This  supports  the  conclusion  drawn  from  the  distributional  graph,  but  provides  no
further indication as to why V/PDs might have a different distribution of temperature. There is a broad
range of  factors  that could influence V/PD incidents to occur  at  lower temperatures,  including:  the
national geographic distribution of V/PD incidents, the prevalence of snow removal equipment in V/PD
incidents,  and  changes  in  airport  vehicle  driver  behavior  due  to  cold  weather.  It  is  unlikely  that
temperature causes V/PDs; investigating factors related to cold weather that may cause V/PDs may be
helpful in understanding this distribution and its policy implications.

Dew Point
(Weather Database)

This variable provides an estimate of the dew point at the time of the incident. The dew point indicates
the temperature at which water vapor in the air condenses into liquid water. Higher dew points are
associated with more humid air and severe weather.52 As with the many of the weather variables, it is
unlikely that a higher or lower dew point causes increased or decreased severity.  However,  factors

52 National Weather Service Weather Forecast Office (2012).



related  to  dew  point  (such  as  haziness  or  approaching  weather)  may  contribute  to  increased  or
decreased  severity.  Figure  31  presents  the  distribution  of  this  variable  overall,  by  severity,  and  by
incident type.
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Figure 31 – Distribution of Dew Point

The distributions across severity types appear fairly  similar.  Category A incursions appear to have a
slightly higher median dew point than the other three categories. Similarly, OE incursions appear to have
a higher median dew point than either PD or V/PD incursions. Table 136 and Table 138 present the
percentiles of the distribution by severity and incident type. Table 137 and Table 139 present the results
of Kruskal-Wallis tests by severity and incident type.

Table 136 – Percentile of Dew Point by Severity

10th 25th 50th 75th 90th

A 23 36 50.55 62.2166
7

70

B 16 31.75 48 60.5666
7

70

C 19.9 32 48 60.2666
7

68.9333
3

D 21 33.3666 48 59.8833 68.2666



10th 25th 50th 75th 90th

6 4 7

Overall 21 33 48 60 68.5833
4

Table 137 – Kruskal-Wallis Test Results for Dew Point by Severity

A B C D

Number of Observations 120 128 3104 4743

Mean Rank 4290.4
4

4078.6
4

4023.1
1

4057.3
3

Chi2 score 1.74

Degrees of Freedom: 3

P-value: 0.63

Table 138 – Percentile of Dew Point by Incident Type

10th 25th 50th 75th 90th

OE 21.8 34.95 50 61.8666
6

69.5666
7

PD 21 33 48 60 68.2666
7

V/PD 19.4666
7

32 47.0333
3

59 68.1333
3

Overall 21 33 48 60 68.5833
4

Table 139 – Kruskal-Wallis Test Results for Dew Point by Incident Type

OE PD V/PD

Number of Observations 1219 4925 1951

Mean Rank 4290.4
4

4078.6
4

4023.1
1



Chi2 score 10.55

Degrees of Freedom: 2

The  results  by  severity  indicate  that  the  severity  categories  are  indistinguishable  jointly.  That  is,  it
appears that dew point does not vary systematically by severity category. This is not entirely surprising,
given that there is no strong hypothesis for how or why dew point would impact severity. If dew point
were a proxy for another underlying cause (such as haziness), it is not a strong enough proxy to show up
in these results.  A more focused examination of other weather phenomena may provide additional
insight.

The results by incident type do indicate differences among groups. While the three incident types are
jointly different, only OE incidents can be distinguished from any other group (PD and V/PD incidents are
indistinguishable). It is unclear why OEs have a higher median dew point. It is likely that there is some
underlying cause associated with dew point that is manifesting in this test statistic. A more focused
study may reveal that underlying cause (or causes) or indicate that this is a spurious correlation.

Temperature-Dew Point Difference
(Weather Database)

Continuing  with  the  examination  of  temperature  measures,  this  variable  examines  the  difference
between temperature and the dew point. When the dew point and temperature are closer, fog and
precipitation are more likely.53 Figure 32 presents the distribution of this variable overall, by severity,
and by incident type.

53 Ibid.
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Figure 32 – Distribution of Temperature – Dew Point Difference

Firstly, there are no negative values. This is due to an intrinsic relationship between dew point and
temperature. Secondly, the differences between temperature and dew point can be quite large, though
most of  the distribution is  contained below the twenty-degree difference mark.  The distribution by
severity appears fairly similar among all four categories. By incident type, the distributions also appear
similar,  but  PD  incidents  may  have  a  slightly  higher  median  difference.  The  percentiles  of  the
distributions by severity and incident type are contained in Table 140 and Table 142. The results of
Kruskal-Wallis tests by severity and incident type are contained in Table 141 and Table 143.

Table 140 – Percentiles of Temperature – Dew Point Difference by Severity

10th 25th 50th 75th 90th

A
2.39999

9
7.15000

2
15.4 28.95

39.4833
3

B
3.23333

4
8.83333

6
14.8916

6
22.275 30.4

C 5
9.39166

8
16

25.5166
6

38.0666
7

D
4.16666

8
8.5 14.95

23.5333
3

34.7

Overall 4.36666 8.94999 15.3333 24.4 36



10th 25th 50th 75th 90th

5 7 4

Table 141 – Kruskal-Wallis Test Results for Temperature – Dew Point Difference by Severity

A B C D

Number of Observations 120 128 3104 4743

Mean Rank 4060.2
6

3810.8
9

4209.3
2

3948.5
2

Table 142 – Percentiles of Temperature – Dew Point Difference by Incident Type

10th 25th 50th 75th 90th

OE 4 8.25 14.9
23.5333

3
34.2

PD 5
9.44999

9
16.2

25.5333
3

38.8333
3

V/PD
3.96666

7
7.53333

3
13.45 21.8

32.0333
3

Overall
4.36666

5
8.94999

7
15.3333

4
24.4 36

Table 143 – Kruskal-Wallis Test Results for Temperature – Dew Point Difference by Incident Type

OE PD V/PD

Number of Observations 1219 4925 1951

Mean Rank
3891.1

7
4239.5

5
3662.4

5

Chi2 score 91.68

Degrees of Freedom: 2



The results in Table 141 indicate that the severity levels differ jointly, but only categories C and D can be
distinguished from each other. It is possible that with more observations, Categories A and B might also
be able to be distinguished. It  appears that category C has a slightly higher median difference than
category D. Further research is required to understand if this is indicative of a true impact on severity or
an artifact of the data.

The  results  of  the  test  by  incident  type  indicate  that  the three  incident  types  are  not  only  jointly
significant, but all pairwise different from each other. The source of the observed differences is unclear.
PD incidents have the largest median difference while V/PD incidents have the smallest. The difference
between temperature and dew point is related to the chance of precipitation, and it is possible that pilot
behavior  is  responding  to  this.  That  is,  if  fewer  pilots  (presumably  GA)  fly  when  the  chance  of
precipitation is higher; this may drive the median difference higher. Explanations for the variation in OE
and V/PD incidents are less forthcoming. Factors related to the difference of temperature and dew point
(notably precipitation) and how those factors impact incidents of various types should be investigated
further. 

Cloud Ceiling
(Weather Database)

This variable measures the height of the cloud ceiling at the time of the incident. It was interpolated in a
similar fashion to the other weather variables. Figure 33 presents the distribution of this variable.
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Figure 33 – Distribution of Cloud Ceiling

Note  that  there  is  a  large  amount  of  peaking  at  certain  values  (approximately  15,  20,  25,  and  30
thousand feet). This is likely due to rounding by those reporting the incident. The distribution by severity
indicates that the median cloud level increases as severity decreases from A to C. Category D breaks this
pattern. As noted previously, it is possible that category D incidents are a product of a different process
than conflict incidents – this may be yet another supporting indication. Cloud ceiling looks fairly similar
between OE and PD incidents while V/PD incidents appear to have a slightly lower median. Table 144
and Table 146 present the percentiles of the distribution by severity and incident type. Table 145 and
Table 147 present the results of Kruskal-Wallis tests by severity and incident type.

Table 144 – Percentiles of Cloud Ceiling by Severity

10th 25th 50th 75th 90th

A 8 22.6 46.6833
3

137.2 250

B 17 29.3 65 158.333
3

250

C 17.5 37.0666
7

76.25 200 250

D 14.0333
3

32 64 150 250



10th 25th 50th 75th 90th

Overall 15
34.0833

3
68.9583

3
168.535

7
250

Table 145 – Kruskal-Wallis Test Results for Cloud Ceiling by Severity

A B C D

Number of Observations 58 82 1893 2755

Mean Rank
2032.2

0
2278.9

8
2531.7

4
2311.2

7

Table 146 – Percentiles of Cloud Ceiling by Incident Type

10th 25th 50th 75th 90th

OE 15 32 73.15 180 250

PD 16.2 36.2 70 180 250

V/PD 12 29.6083
3

60 142.433
3

250

Overall 15 34.0833
3

68.9583
3

168.535
7

250

Table 147 – Kruskal-Wallis Test Results for Cloud Ceiling by Incident Type

OE PD V/PD

Number of Observations 822 2798 1168

Mean Rank 2450.4
4

2442.4
0

2240.3
7



The results indicate that cloud ceiling differs significantly by incident type and severity. Both OE and PD
incidents are distinguishable from V/PD incidents while OE and PD incidents are not pairwise different.
This supports the observation noted above and warrants further investigation as it is not clear why cloud
cover should impact incidents where a vehicle or pedestrian was at fault (or even runway incursions in
general, though it may impact visibility for pilots and controllers).

The patterns by severity are less clear. While jointly different, only categories A and C and C and D can
be considered pairwise different. All other combinations are not significantly different. This is similar to
the pattern noted in the distribution – that A, B, and C incursions have a trend in median ceiling level
while category D appears similar to B, breaking the pattern – but there is not strong evidence to support
it. Thus, it is possible that there is an impact of cloud ceiling height on event severity, but the effects are
not clear. The mechanism through which cloud ceiling would impact runway incursion severity is also
not clear. If the factor at play is really visibility, a more direct measurement of visibility would offer
improved explanatory power.

Cloud Coverage
(Weather Database)

This variable indicates how much of the sky was covered with clouds. The original rating is presented as
a series of increasing fractions from Clear (0/8ths of the sky covered) to Overcast (8/8ths of the sky
covered). Due to the sequential nature of these categories (and their approximation to fractions), it was
decided to turn this variable into a numeric variable describing how many eighths of the sky is covered.
Thus, the variable ranges from 0 to 8. Table 148 presents the mapping from the original categories to
the numeric values. As the original categories covered a range of values, the midpoint of each range was
used.54

Table 148 – Mapping of Cloud Coverage Categories to Numeric Values

Original Category Numeric
Value

Clear (0/8) 0

Few (between 0/8 and 2/8) 1

Scattered (between 2/8 and 4/8) 3

54 The categories presented in Table 129 present an interesting problem. First, the categories are of differing
widths. Clear and Overcast only cover one value while Few, Scattered, and Broken represent ranges. Additionally,
some categories overlap,  while others are adjacent.  Clear indicates 0/8 parts of the sky is  covered.  The next
category, Few, indicates that between 0 and 2 out of 8 parts are covered. This category picks up exactly where
clear left off. Scattered begins at 2 where Few left off and ends at 4. Broken, however, begins at 5 – one unit more
than where Scattered ends. Overall this is likely a minor quirk in the definition, but it may create artifacts in the
data and ends up making the top part of the scale more spaced out than the bottom half.



Original Category
Numeric

Value

Broken (between 5/8 and 7/8) 6

Overcast (8/8) 8

After conversions to a 0 to 8 scale, values were interpolated between the two points and then rounded.
This was an attempt to more accurately represent the precision of the information in the data. The
original data did not contain the high level of decimal precision implied by the interpolation process,
thus the data was rounded to the nearest half. The final data measures the number of eighths of the sky
covered from 0 to 8, measured in steps of 0.5. While the units may seem odd, the variable can still be
interpreted as the fraction of the sky covered with clouds.
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Figure 34 – Distribution of Cloud Coverage, Rounded

The rounding procedure mentioned above has a distinct effect on the distribution of this variable, as
seen in Figure 34. Note that in addition to the rounding to the nearest half, there are also distinct spikes
are certain values – such as 1, 3, 6, and 8. These values are the midpoints of the original categories, as
indicated  in  Table  148.  There  are  still  a  fair  amount  of  observations  in  between  these  values,  as
generated by interpolation, but this clumping is important to be aware of when considering the impact
this variable may have.



When considered by severity, all the categories appear similar aside from category A, which has lower
median cloud coverage. This is surprising, as a naïve hypothesis is that increased cloud coverage would
increase severity. Further testing is required to determine if this difference is significant or an artifact of
the data. Similarly for incident type, while the different types appear to have different median cloud
cover values, further testing is required to see if the difference is significant. Table 149 and Table 151
present  the percentiles  of  the  distribution  by  severity  and  incident  type.  Table  150 and Table  152
present the results of a Kruskal-Wallis test by severity and incident type to examine these issues.

Table 149 – Percentiles of Cloud Coverage by Severity

10th 25th 50th 75th 90th

A 0 0 1 4.5 8

B 0 0 2 6 8

C 0 0 2 6 8

D 0 0 2 6 8

Overall 0 0 2 6 8

Table 150 – Kruskal-Wallis Test Results for Cloud Coverage by Severity

A B C D

Number of Observations 58 82 1893 2755

Mean Rank
2032.2

0
2278.9

8
2531.7

4
2311.2

7

Table 151 – Percentiles of Cloud Coverage by Incident Type

10th 25th 50th 75th 90th

OE 0 0 3 6 8

PD 0 0 1.5 6 8

V/PD 0 0 2.5 6 8

Overall 0 0 2 6 8



Table 152 – Kruskal-Wallis Test Results for Cloud Coverage by Incident Type

OE PD V/PD

Number of Observations 1223 4961 2013

Mean Rank
4467.4

9
3965.4

4
4204.2

9

The results by severity indicate that the categories are not jointly different. This indicates that the lower
median coverage observed in Figure 34 is an artifact of the data rather than a substantial difference. The
results by incident type are more interesting. All incident types are jointly different as well as pairwise
different. Pilots appear to have the lower median than the other two incident types indicating that pilot
incidents tend to happen with less of the sky covered by clouds. VFR are also more likely when there are
fewer  clouds  –  increasing  the  number  of  pilots  flying,  and  thus  potentially  involved  in  a  runway
incursion. It is likely that cloud coverage, like cloud ceiling, is related to visibility. Cloud coverage should
be investigated as part of a broader study on weather impacts, although the main influence appears to
be on incident type rather than on severity. 

Visibility
(Weather Database)

While the previous two variables dealt with visibility indirectly, this variable measures visibility directly.
This  variable measures  the distance one can see (approximately)  in  miles.  Figure  35 and Figure  36
present the same information, but figure twelve focuses on reports of visibility less than 10 miles.
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Figure 35 – Distribution of Visibility

As Figure 35 indicates there is extreme bunching of visibility readings at 10 miles, which is effectively a
coding for unlimited. The bunching is so dramatic that when broken down by severity or incident type,
all parts of the box plot are coded as 10 miles – i.e. the upper and lower whiskers, 25 th, 50th, and 75th

percentiles are all 10 miles. Figure 36 focuses on the distribution of readings less than 10 miles (i.e.,
times with less than unlimited visibility), to enable a clearer analysis of the distribution of visibility.
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Figure 36 – Distribution of Visibility, Visibility Less than 10 miles

The  distribution  appears  to  be  leftward  skewed,  with  more  readings  occurring  at  higher  readings
(though less than 10 miles). This is likely indicative of a larger trend in behavior of less traffic when the
conditions are low visibility. This may be due to changes in flight rules (visual versus instrument) or due
to pilots simply choosing to stay on the ground. There also appears to be bunching near whole values,
indicating some rounding taking place among those generating METAR readings.

The distribution by severity hints that category A incursions may occur with a lower median visibility,
though the interquartile range is fairly large, as seen in Table 153. The remaining categories of B, C, and
D all appear to have similar median visibilities. Category B also has smaller whiskers. While all other
categories cover almost the entire range, category B’s whiskers are much smaller, covering slightly more
than half the range. This is indicative that the distribution of visibility among category B incidents is
narrower than other categories. The distribution across incident types appears almost identical in terms
of median, interquartile range and whiskers. The percentiles by incident type are given in Table 155. 

Table 154 and Table 156 present the results of Kruskal-Wallis tests by severity and incident type.

Table 153 – Percentiles of Visibility by Severity

10th 25th 50th 75th 90th

A
.

2733333
2 4.4 7 9.05

B 1.25 5.61666 7 8.48333 9



10th 25th 50th 75th 90th

7 3

C 2.14166
7

5 7.26666
7

9 9.46666
7

D 2.51666
7

5 7 8.72083
3

9.36666
7

Overall 2.41666
7

5 7 8.8 9.4

Table 154 – Kruskal-Wallis Test Results for Visibility by Severity

A B C D

Number of Observations 27 35 603 1008

Mean Rank 480.02 799.57 861.42 833.25

Table 155 – Percentiles of Visibility by Incident Type

10th 25th 50th 75th 90th

OE 1.96 4.41666
7

7 8.8 9.4

PD 2.51666
7

5 7.18333
3

8.9 9.43333
3

V/PD 2.18333
3

4.77235
8

7 8.65 9.36666
7

Overall 2.41666
7

5 7 8.8 9.4

Table 156 – Kruskal-Wallis Test Results by Incident Type

OE PD V/PD

Number of Observations 257 942 474

Mean Rank 799.48 858.27 815.08



OE PD V/PD

The results indicate that the severity categories are jointly different while the incident types are not.
Category A incursions can be distinguished from categories C and D. After the correction for multiple
comparisons,  categories A and B are considered not significantly different,  albeit barely.  With more
observations in each category, it is likely that categories A and B could be distinguished. This suggests
that  the lower median visibility  for  category A is  significant.  Note that  these are all  conditional  on
visibility being less than 10 miles. Without that constraint, the categories are indistinguishable.

Properly controlling for the relation among visibility, ceiling, and cloud cover might reveal the nature of
the  interaction.  Indeed,  many  weather  phenomena  (such  as  precipitation)  might  impact  severity
through reduced visibility. This research hints at the impact weather may have, but a more thorough
undertaking with precise weather data would illuminate some of these issues.

Visual Meteorological Conditions (VMC)
(Runway Incursion Database)

This variable indicates (broadly) the weather conditions at the time of the incident. This is not to be
confused with visual (or instrument) flight rules which indicate the operating procedure at that time.
VMC indicates that the weather was good enough for visual flight. The overall frequency of this variable
is noted in Figure 37.
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Figure 37 – Overall Distribution of VMC

 Table 157 indicates the impact of VMC on the odds of being severe.

Table 157 – Logit Estimate of Impact on Severity, VMC

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

VMC .578 .124 0.01 .379 .881

Not  surprisingly,  VMC are  associated with  less  severe  incidents.  The magnitude  is  also quite  large,
almost halving the odds. This impact is likely related to visibility and, perhaps, reduced complexity of
operations. Because this variable (possibly) conflates many different effects, it  is less attractive as a
modeling variable.

Sea Level Pressure Deviation
(Weather Database)

This variable indicates the air pressure at the time of the incident, normalized to sea pressure. Pressure
varies with altitude, thus it is important to normalize to a standard altitude (in this case, sea level). Thus,
it is most helpful to examine this variable in terms of deviation from standard pressure (1013.25 mb).
Figure 38 presents this distribution. The percentiles of the distribution by incident type and severity are
presented in Table 158 and Table 159 while the results of a Kruskal-Wallis test by severity and incident
type are presented in Table 160 and Table 161, respectively.
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Table 158 – Percentiles of Deviation of Sea Level Pressure by Severity

10th 25th 50th 75th 90th

A -4.063353 -1.870853
1.27251

2
4.99748

3
8.01001

B -3.731671 -1.024994
2.34997

6
5.44998

2
12.9316

2

C -4.8 -1.160004
2.78335

8
6.82997

8
11.3666

4

D -5.076664 -1.288324
2.49333

5
6.77333

5
11.0966

9

Overall -4.91667 -1.256665
2.57249

8
6.77001

11.1400
5



Table 159 – Percentiles of Deviation of Sea Level Pressure by Incident Type

10th 25th 50th 75th 90th

OE -4.650024 -1.244983
2.82164

9
7.31000

4
11.6500

2

PD -4.666676 -1.276668
2.51000

9
6.66335

4
10.9766

4

V/PD -5.516679 -1.150024
2.54998

8
6.84997

6
11.4100

1

Overall -4.91667 -1.256665
2.57249

8
6.77001

11.1400
5

There does not appear to be any relationship between this  variable and severity,  nor between this
variable  and  incident  type.  This  conclusion  is  supported  by  the  results  of  the  Kruskal-Wallis  tests
outlined below.

Table 160 – Kruskal-Wallis Test Results for Deviation of Sea Level Pressure by Severity

A B C D

Number of Observations 72 55 1997 3062

Mean Rank 2327.3
7

2473.8
9

2626.7
4

2580.2
3

Table 161 – Kruskal-Wallis Test Results for Deviation of Sea Level Pressure by Incident Type

OE PD V/PD

Number of Observations 795 3170 1221

Mean Rank 2659.3
0

2580.9
4

2583.2
7



Weather Phenomena
(Weather Database)

In addition to basic weather information, the METAR reports contain information regarding any weather
phenomena at the measurement time. The majority of these phenomena encompass different kinds of
precipitation. In addition to the various kinds of precipitation, haze, fog, and smoke are also indicated.
As Figure 39 indicates, the majority of incursions occur when there are no weather phenomena. This is
not surprising, given that many amateur pilots may not be able to fly in less than pristine meteorological
conditions. Figure 40 presents the same distribution but excludes cases of “No Weather.” Overall, the
distribution is dominated by “haze,” “light rain,” and “light snow.”
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Figure 39 – Distribution of Weather Phenomena
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Figure 40 – Distribution of Weather Phenomena, excludes “No Weather”

To  simplify  the  analysis,  the  various  weather  phenomena  codes  have  been  collapsed  into  a
dichotomized variable indicating if there was  any  weather at the time of the incident. Table 162 and
Table 163 present the observed and expected distributions of this indicator.

Table 162 – Observed Distribution of No Weather Indicator by Severity

A B C D Total

Weather Present 21 17 296 535 869

No Weather 101 114 2,817 4,291 7,323

Total 122 131 3,113 4,826 8,192

Table 163 – Expected Distribution of No Weather Indicator by Severity

A B C D Total

Weather Present 13 14 330 512 869

No Weather 109 117 2,783 4,314 7,323

Total 122 131 3,113 4,826 8,192

The test results indicate that there is a relationship between this variable and severity. Categories A, B,
and D appear underrepresented, although categories A and B are barely lower than the expected values.
It appears that the relationship is driven primarily by the observed and expected results from categories
C  and  D.  After  excluding  non-conflict  events  the  results  are  similar.  Categories  A  and  B  are
underrepresented, while category C incursions are observed more than expected. This indicates that
incursions tend to be less severe when there are no weather phenomena.

Table 164 – Observed Distribution of No Weather Indicator by Severity, Conflict Only

A B C Total

Weather Present 21 17 296 334

No Weather 101 114 2,817 3,032

Total 122 131 3,113 3,366



Table 165 – Expected Distribution of No Weather Indicator by Severity, Conflict Only

A B C Total

Weather Present 12 13 309 334

No Weather 110 118 2,804 3,032

Total 122 131 3,113 3,366

Wind Speed
(Weather Database)

This variable measures the wind speed at the time of the incident (in knots). Figure 41 and Table 166
present  the  distribution  of  wind  speed.  Table  167  contains  the  results  of  a  Kruskal-Wallis  test  by
severity. There does not appear to be a significant relationship between wind speed and severity.
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Figure 41 – Distribution of Wind Speed

Table 166 – Percentiles of Wind Speed by Severity

10th 25th 50th 75th 90th

A
2.566667 4.65 7.25 9.71666

6
12.8333

3

B
1.4 4.8 7.54166

7
10 11.9333

3

C 1.9 4.416667 7 10 13.2

D 1.4 4.15 6.85 10 13.0666
7

Overall 1.6 4.266667 6.96666
7

10 13.1

Table 167 – Kruskal-Wallis Test Results for Wind Speed

A B C D

Number of Observations 122 132 3128 4829

Mean Rank 4167.0 4229.4 4166.4 4061.9



A B C D

1 5 8 0

3.3.7. Other Variables

These variables do not necessarily fall into the other categories above.

Snow Removal Vehicle Involved
(Runway Incursion Database)

This  variable  indicates  whether  a  snow  removal  vehicle  was  involved  in  the  event.  This  variable
incorporates  many  effects  under  one  umbrella:  decreased  visibility  to  snow,  special  operating
procedures to accommodate snow removal and weather, and unfamiliar drivers with access to runways.
It is not possible to disentangle these without more accurate measures of the component factors, such
as driver experience or (especially) weather / visibility. Figure 42 presents the overall distribution of this
variable.
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Figure 42 – Distribution of Snow Removal Vehicle Involved

Table 168 and Table 169 present the distribution of this variable by severity, while Table 170 and Table
171 present the distribution by incident type.

Table 168 – Observed Distribution of Snow Removal Vehicle Involved by Severity

A B C D Total

No 129 143 3,275 5,184 8,731

Yes 3 2 33 43 81

Total 132 145 3,308 5,227 8,812

Table 169 – Expected Distribution of Snow Removal Vehicle Involved by Severity

A B C D Total

No 131 144 3,278 5,179 8,731

Yes 1 1 30 48 81



A B C D Total

Total 132 145 3,308 5,227 8,812

Table 170 – Observed Distribution of Snow Removal Vehicle Involved by Incident Type

OE PD V/PD Total

No 1,257 5,295 2,179 8,731

Yes 11 7 63 81

Total 1,268 5,302 2,242 8,812

Table 171 – Expected Distribution of Snow Removal Vehicle Involved by Incident Type

OE PD V/PD Total

No 1,256 5,253 2,221 8,731

Yes 12 49 21 81

Total 1,268 5,302 2,242 8,812

The distribution by severity,  and its  associated Fisher’s  Exact  test  statistic,  indicates no relationship
between severity and snow removal vehicles. While there are a relatively low number of observations,
no dramatic trend by severity presents itself.  This could be due to the fact that current operational
changes when snow removal vehicles are present already compensate for the increased risk introduced.

The distribution by incident type is  more interesting.  Firstly,  the Chi-Squared statistic  indicates that
there  is  a  relationship  between  the  presence  of  snow  removal  vehicles  and  type.  There  are
approximately 3 times as many observed V/PD incidents than expected. PD incidents are dramatically
under-represented while OE incidents are close to their  expected value.  The large number of  V/PD
incidents is interesting, indicating that when snow removal vehicles are involved in an incident, they are
disproportionally at fault.

Given  the  high  concentration  of  V/PD  incidents,  it  is  instructive  to  examine  the  severity  of  those
incidents  more  closely.  Recall  that  Table  168  indicated  no  relationship  between  severity  and  the
presence of snow removal vehicles. That test statistic was calculated for all  incident types, whereas



Table  172 and Table 173 present the same information,  distribution by  severity,  but  only for  V/PD
incidents.

Table 172 – Observed Distribution of Snow Removal Vehicle Involved by Severity, V/PD Only

A B C D Total

No 14 22 520 1,623 2,179

Yes 2 1 23 37 63

Total 16 23 543 1,660 2,242

Table 173 – Expected Distribution of Snow Removal Vehicle Involved by Severity, V/PD Only

A B C D Total

No 16 22 528 1,613 2,179

Yes 0 1 15 47 63

Total 16 23 543 1,660 2,242

Here, the test statistic indicates that there is a relationship among severity. Category D appears to be
underrepresented  while  the  conflict  categories  are  all  overrepresented.  This  indicates  that  V/PD
incidents involving snow removal vehicles tend to be more severe than V/PD incidents not involving
snow removal vehicles. The trend among conflict incidents is less clear (partly due to sample size issues).
It is possible that snow removal vehicles are more likely to conflict with aircraft than other types of
vehicles due to the nature of their operations. A better examination of the involvement in snow removal
vehicles would account for the fact that snow removal vehicles are some of the few vehicles operating
on runways. Further investigation is necessary to determine if snow removal vehicles are actually more
risky or their over representation in conflict events is a product of their unique activities.

Day/Night Indicator
(Runway Incursion Database)

This  variable  indicates  if  the  event  occurred  during  the  daytime.  As  the  hours  of  daylight  shift
throughout the year, this is perhaps a better (though slightly subjective) measure than the hour the
incident occurred. This variable originates from the Runway Incursion database and is thus available for
a large number of incidents. Figure 43 presents the overall frequency of this day/night indicator (note
that a coding of “yes” indicates daytime). 
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Figure 43 – Overall Frequency of Day/Night Indicator

Table 174 and Table 175 present the distribution of this variable by incident severity.

Table 174 – Observed Distribution of Day/Night by Severity

A B C D Total

No 30 23 408 568 1,029

Yes 102 120 2,891 4,611 7,724

Total 132 143 3,299 5,179 8,753

Table 175 – Expected Distribution of Day/Night by Severity

A B C D Total

No 16 17 388 609 1,029



A B C D Total

Yes 116 126 2,911 4,570 7,724

Total 132 143 3,299 5,179 8,753

As daytime and nighttime are opposites, it may be more instructive to examine the “No” row above;
that is, observations coded as “No” for daytime must, by definition, have occurred after dark. The test
statistic indicates that there is indeed a relationship between daytime/nighttime and severity. Examining
the expected values indicates that categories A, B, and C are overrepresented at night while category D
is underrepresented. This suggests that conflict incidents are more likely to occur at night.

Table  176  and  Table  177  present  the  distribution  by  incident  type.  Again,  there  is  a  significant
relationship between these two variables. OE and V/PD incidents occur more often than expected at
night, while PD incidents occur less frequently than expected at night. This may be due to macroscopic
patterns in pilot behavior throughout the day. Less experienced pilots may not be (or be allowed to be)
flying at night and thus are unable to commit errors. Given the strong relationship between incident
type and severity,  it  is  possible that the severity relationship seen in Table 176 is  a product of the
relationship of  incident type.  Further  research into the relationship between day/night and severity
should account for incident type explicitly. Additionally, it is unclear why day/night would impact the
three incident  types differently.  An examination of  into these differing  impacts  and how they may
contribute to severity would help better understand the impact of day/night on runway incursions.

Table 176 – Observed Distribution of Day/Night by Incident Type

OE PD V/PD Total

No 220 533 276 1,029

Yes 1,047 4,749 1,928 7,724

Total 1,267 5,282 2,204 8,753

Table 177 – Expected Distribution of Day/Night by Incident Type

OE PD V/PD Total

No 149 621 259 1,029

Yes 1,118 4,661 1,945 7,724



OE PD V/PD Total

Total 1,267 5,282 2,204 8,753

Events occurring at night have odds of being severe of approximately 83% higher than those occurring in
daytime. As indicated in Table 178, this result is fairly precise. A similar result holds for the impact on the
likelihood of being an OE (compared to either PD or V/PD),  as seen in Table 179. Interestingly, the
effects  are  approximately  the  same  size.  It  is  possible  this  similarity  is  driven  by  the  underlying
relationship between incident type and severity. The results presented in Table 180 attempts to correct
for this.

Table 178 – Logit Estimate of Impact on Severity, Night

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Night 1.83 .287 0.00 1.35 2.49

Table 179 – Logit Estimate of Impact on Incident Type, Night

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Night 1.75 .145 0.00 1.49 2.06

Table 180 – Logit Estimate of Impact on Night55

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

OE Incident 1.70 .142 0.00 1.44 2.00

Severe 1.62 .257 0.00 1.19 2.21

Interestingly, the effects persist. That is, night impacts severity, even when accounting for incident type,
and night also impacts incident type even when accounting for severity. These results also tell us two
further things. Firstly, the size of the impacts is indistinguishable (the difference of the coefficients is not
significantly  different  from  zero).  Secondly,  there  is  no  interaction  effect.  That  is,  night  makes  an
incident more likely to be severe and more likely to be an OE, but only as the sum of its parts. Another
way to think about it is that the odds ratios are multiplicative: night increases the odds of a severe OE by

55 Strictly  speaking,  this  logit  is  constructed  such  that  an  indicator  for  night  is  the  dependent  variable.  As
regressions only estimate correlation,  the calculation of the coefficients is  indifferent to whether night  is  the
dependent or independent variable. Thus the regression was structured in this way to enable the appropriate
comparison: the impact of night on OE status and the impact of night on severity. This is only possible because all
three variables are binary flags.



approximately 2.9 (1.7 * 1.7 = 2.9). That the effects are relatively constant in size over multiple model
specifications and are precisely estimated indicates that this is likely a robust impact. Further research
into the exact mechanism through which night impacts severity and controller actions may yield results
that could improve operations.

Collision
(Runway Incursion Database)

Collisions between aircraft are also tracked in the Runway Incursions database, provided they occur on a
runway. While exceedingly rare (only 7 appear in the 10 years covered by the dataset), it may be helpful
to examine these incidents. Note that all collisions are considered a category A incursion, so no analysis
of severity is possible.

Table 181 – Logit Estimate of Impact on Likelihood of Collision, OE Incident

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

OE Incident 14.9 12.5 0.00 2.89 77.0

Table 181 indicates the increase in the odds of a collision, given that the event is an OE (the alternative
being PD or V/PD). While the increase is quite dramatic (almost 15 times as high as non-OE incidents),
the confidence interval is also quite large. It is important to consider the variance in the estimate as well
as the magnitude of the estimate. There is little doubt that an OE incident has higher odds of being a
collision, but the odds may increase anyway from approximately 2 to 77 times. Due to the extreme rarity
of collision events, it will be difficult to get a more precise estimate without much more data, which is, in
this case, not a desired event. This result further supports the claim that OE incidents tend to be more
severe, but more research into why OE incidents are more severe is still required.



4. MODELING METHODS AND RESULTS

4.1.Methodology Background

While analysts use a variety of modeling methods, the purpose of this research is to engage in statistical
analysis using regression models. Within regression models, though, a wide range of specifications are
possible; selecting an appropriate model (or series of appropriate models) requires an understanding of
the different assumptions underlying each model. These underlying assumptions can also impact the
interpretation of  model  results,  which can  in  turn  affect  policy  recommendations.  This  section will
review basic regressions as well as discrete choice models.

4.1.1. Regression as a Concept

The most basic  regression framework is ordinary least  squares (OLS) regression.  Given a dependent
variable Y and a set of independent variables X, the basic structure can be described as:��= β��+ ε 

 
where β is a set of coefficients that can be estimated that captures the effects of variables, and ε is a
random disturbance term that  includes “unobserved  variables,”  that  are  not  captured in  X.  In  this
framework, β represents the marginal impact of an increase in X on Y. If β is positive, then increased X is
associated with increased Y; if β is negative, then increased X is associated with decreased Y. It is also
important to note that this framework merely describes the relationship between X and Y and says
nothing of causation in either direction.

In the context of regression analysis, OLS regression is  applicable to a wide range of situations. For
example, it can be used to explore the relationship between income and demographic factors or the
health  impacts  of  various  policy  decisions.  It  allows  the  researcher  to  decompose  the  effects  of
exogenous variables, controlling for their differing impacts on the dependent variable. OLS regression is
extremely flexible in terms of the relationships between variables that can be captured. The X described
above can include just a few variables, or many with interactions between them. OLS regression is also
simple to implement.

Despite its many advantages, OLS regression has some serious shortfalls when trying to describe data
such as runway incursion severity.  By definition, the severity of a runway incursion falls into one of
several categories: A through D. The convention in this case is to number the categories 1 through 4,
with A being the highest number (thus positive β suggest increasing severity).  However, it  becomes
quickly apparent that OLS does not bound the estimation in any way. That is, given the right confluence
of negative βs, OLS may predict a score less than one (or perhaps even a negative score).

Consider a more concrete example: suppose OLS regression is used to model the optimal runway choice
at  a  hypothetical  airport  based  on  factors  such  as  aircraft  size,  weather,  and  destination.  This
hypothetical  airport  has  three  runways:  1-19,  9-27,  and  15-33.  Given  the  description  of  a  new
hypothetical flight, the model predicts an optimal runway choice of 4.73. Firstly, runway 4.73 is not a



valid choice at any airport. Worse still,  there is no particular rounding rule that could be assured of
providing correct results.

Figure 44 below presents this distinction graphically. The figure depicts a hypothetical sample of heights
and weights and plots the relationship between them. Notice that various intermediate values of height
are shown and that the values of height are not restricted in any fashion. These data are appropriate for
analyzing with OLS regression.

Figure 44 - Example OLS Data

The  following  figure,  Figure  45,  depicts  data  that  is  not  appropriate  for  analyzing  with  OLS  and  is
categorical in nature. Notice that the heart attack risk group outcome is restricted to only three values:
low medium high and intermediate values are not possible.



Figure 45 - Example Categorical Data

In addition to the problems relating to boundedness and integer values mentioned above, OLS has an
additional, and perhaps more important, failing in relation to incursion severity data. Incursion severity
data has the property that it is merely ordinal, not cardinal. That is, incursion severity data has some sort
of ranking (A is more severe than B, etc.) but the ranking does not describe the distance between ranks.
An incursion of severity level B is more severe than a C-level incursion, which is in turn more severe than
a D-level incursion. However, a category B incursion may be much more severe than a C compared to
the difference  between a  category  C  incursion  and a  category  D incursion.  While  there  is  logic  to
assigning severity ratings of A-D on a scale of 1-4 (with A being the highest), this decision is entirely
arbitrary. In fact, given the substantial effort invested in preventing category A and B incursions, one
could suggest that the proper scale should be 2, 3, 6, and 12 (for severity D, C, B, and A). Using this scale,
one could argue that Category D and C E incursions are progressively more severe at a constant rate, but
that  Category  B  incursions  are  twice  as  severe  as  Category  C  incursions.  Moreover,  in  this  case,  a
Category A incursion is twice as severe as a Category B, 4 times more severe than a Category C, and 6
times more severe than a Category D. This would certainly be in line with the specific concern for A and
B-level incursions, but without some sort of specific analytical and numeric rationale, this categorizing
system is just as arbitrary as using 1-4. That is, how can we be sure the real ranks are not 2, 3, 6, and
11.5? Consequently, one needs a form of regression that can provide accurate and useful results in the
absence of a perfectly defined scale.

OLS regression does not acknowledge this aspect of the data. OLS treats the change between any two
categories as equal and makes it a suboptimal choice for analyzing data such as runway incursions.

4.1.2. Alternatives to Linear Regression

Data like runway incursion severity falls into a category that can be described as “discrete choice” data.
The data points are placed into distinct  categories,  often of  a  qualitative nature.  An entire class of



models  has  been  developed  to  analyze  discrete  choice  data  and  overcome  the  limitations  of  OLS
regression discussed above.

Discrete  choice  models  have  been  developed to  look  at  binary  choice,  such  as  whether  or  not  to
participate in the labor market and to analyze sets with more than two choices. These multi-choice
models come in a variety of  flavors such as ordered (which recognizes an inherent ordering in the
categories) and multinomial (which do not recognize any ranking among choices). There are additional
extensions to the multinomial model framework that seek to relax several of the constraints imposed by
the standard multinomial model; for more information, see Appendix C.6.

A significant portion of the safety and severity literature utilizes regressions models utilizing a somewhat
different framework than traditional  “frequentist” statistics.  The basis  for these alternative Bayesian
models  is  described  in  Appendix  C.4.  These  models  remain  an  interesting  alternative  modeling
methodology for future research, but due to the lack of previous statistical studies in this field, it was
deemed most useful to utilize the frequentist models as they are less computationally intensive, easier
to understand for readers new to the topic, and should provide similar (if not identical) results to the
Bayesian models.56

Beyond  the  world  of  OLS  and  its  extensions,  the  basis  for  (frequentist)  econometrics  is  maximum
likelihood estimation (MLE). MLE can be used to estimate a plethora of different model types and all of
the models discussed later in this report are estimated using MLE techniques. The focus of MLE is the
likelihood function, L:57 ��ሺ��1 , … , ����ȁ��ሻ ≡ ��(��|��)  

 for a sample of n observations, each with a value of y, noted as y1 … yn. This equation represents the
likelihood of observing the data, y, given parameters β. For this particular application, the likelihood
function,  f  or  L,  represents  the distribution of  runway incursion  severities.  This  formulation can be
extended to include other conditioning variables X:58��ሺ��1 , … , ����ȁ��, ��ሻ ≡ ��(��|��, ��)  

 On the above equation, Greene notes:

the likelihood function is written in this fashion to highlight our interest in the parameters and
the information about them that is contained in the observed data. However, it is understood
that the likelihood function is not meant to represent a probability density…, the parameters are
assumed to be fixed constants which we hope to learn about from the data59

56 The results of the two frameworks converge to the same results due to the lack of any informed priors adding
additional information/usefulness to the Bayesian models.

57 Greene (2003).

58 Ibid.



This likelihood function can be thought of as the data generation process. Suppose y is the probability of
rain  today.  Then  X  will  be  variables  that  may  influence  that,  such  as  temperature,  humidity,  and
atmospheric pressure. β characterizes the impact of those variables on y. The likelihood can also be
thought of as the probability of observing that set of y, given X and β. Maximum likelihood estimation,
true to its name, seeks to choose a β to maximize the above expression (the probability of observing
that set of y given X and β.)

β is  of  fundamental  interest  to the econometrician and policy-maker.  β  captures the effects of  the
various exogenous variables X on the dependent variable y. It is from this information that informed
policy decisions can be made.

4.1.3. Discrete Choice Models

The Problem

As noted earlier, runway incursion severity rankings fall into a category known as discrete choice data. A
variety of models have been developed to analyze these types of data. Each of the potential models has
underlying assumptions and characteristics that may influence the applicability of that model to the
analysis of runway incursion severity. 

To clarify the discussion about which model to use, the various competing models can be separated
along two axes: logit versus probit, and multinomial versus ordered. Logit and probit refer to assumed
distributions of the random disturbance terms. This can have impacts on the assumptions underlying
each kind of model. Ordered and multinomial refer to how the model interprets the various choices (i.e.,
alternative levels of the dependent variable). Both kinds of models deal with choice sets with three or
more alternatives. However, the ordered models recognize an inherent ordering in the choices while
multinomial  models  assume there  is  no  underlying  order  to  the  choices.  Table  182  illustrates  this
breakdown.

Table 182 – Discrete Choice Models under Consideration 

Logit Probit

Ordered Ordered logit Ordered probit

Multinomial

Multinomial logit

(conditional 
logit)

and extensions

Multinomial 
probit

At a simple level, the decision is between one of these four possibilities.  The criteria governing this
decision include tractability,  precision, and how well the model reflects reality.  Additionally, there is
value  in  comparing  different  models.  The  comparison  may  provide  additional  insight  into  the
relationship among variables as well as serve as a sensitivity analysis to the assumptions of the model.

59 Ibid., p. 468-469.



Comparisons across rows and across columns are valuable in the sense that they hold fixed one set of
assumptions. For example, ordered logits are best compared to ordered probits (holding the ordering
assumption  fixed,  but  changing  the  distributional  assumption)  and  multinomial  logits  (holding  the
distributional assumption fixed and relaxing the ordering assumption). Thus, the preferred model is one
whose neighbors are also favorable in terms of the decision criteria above. 

Logits versus Probits

There are some general comments that pertain to the columns of Table 182 that are true regardless of
the row chosen.  The major  distinction between logit  and probit  models  are the distribution of  the
random disturbance term (ε,  which captures the impact of unobserved variables).  In general, probit
models assume a normal distribution for at least some component of ε, while logistic models assume a
logistic distribution.60

In practical  terms, the distinction between logit  and probit  models appears to be minute.  Horowitz
examines this issue by comparing a known multinomial probit function to its logit approximation. He
finds  that  several  thousand  observations  are  required  to  distinguish  between  the  two  models,
depending on the correlation between the random disturbances for each choice. 61 Dow and Endersby
seek to compare multinomial probit and logit models in a more applied setting, examining vote data and
finding similar conclusions to Horowitz. The predicted probabilities are similar between the two models
and the authors note that a sample size of 1500 is not enough to distinguish between the two models. 62

Greene also suggests that ordered logit and probit models provide similar results in practice. 63 This claim
is corroborated in a study by O’Donnell and Connor.64 Consequently, if one finds significantly different
results between the two models (in terms of variable significance and predicted probabilities), further
investigation would be required.

It  is important to note that the interpretation of the models does not depend on the distributional
assumption. The difference in implementation is important from a theoretical perspective, but is largely
transparent to the reader.

60 The implications the different assumptions have for the model are relevant, but a thorough discussion of the
differences in the distributions (and the properties of those distributions) is outside of the scope of this paper. For
a  more  in-depth  discussion  of  the  assumptions  underlying  these  models,  both  in  regards  to  the  random
disturbance term and other properties, please see: Greene (2003), Washington, et al. (2011).

61 Horowitz (1980).

62 Dow and Endersby (2004).

63 Greene (2003), p. 737.

64 O'Donnell and Connor (1996).



Multinomial versus Ordered

As noted earlier, both ordered and multinomial models address choice sets with multiple alternatives.
However, the main difference is that ordered models recognize an inherent ordering of the choices
while multinomial models do not.

Of course, situations such as runway incursion severity are clearly ordered by intention, but multinomial
models  can  also  be  used  to  examine  ordered  data,  providing  some  potential  benefits  as  well  as
drawbacks. Ordered models place a strong constraint on the estimated coefficients. Washington et al.
provide an example: consider accident severity data that has severity rankings of property damage only,
injury, and fatality. Additionally, suppose the effect of airbag deployment was of interest. An ordered
model  constrains  the  coefficient  to  either  “increase  the  probability  of  a  fatality  (and  decrease  the
probability of property damage only) or decrease the probability of fatality (and increase the probability
of property damage only).”65 This may not be the case in reality. Airbag deployment may reduce the
probability of a fatality and of property damage only, due to an increase in probability of an injury. A
multinomial specification allows the flexibility for such effects.66

While ordered models do not allow for this sort of complexity, they do provide more intuitive coefficient
interpretation.  If  the  coefficient  is  positive,  increasing  the  value  of  the  explanatory  variable
unambiguously increases the probability of being in the highest category and the probability of being in
the lowest category decreases, though intermediate categories have a more subtle relationship. 67 Thus,
a tradeoff must be made between accounting for additional accuracy in modeling complex relationships
between severity levels and providing results that are useful and practical to policy-makers. Moreover,
this distinction only exists in the event that the effect of an explanatory variable is not the same across
severity levels.

Similarly,  Washington et al.  note that “if  an unordered model (such as the multinomial logit  model
[MNL]) is used to model ordered data, the model parameter estimates remain consistent but there is a
loss of efficiency.”68 In other words, the multinomial estimates are less precise than an ordered model,
but are unbiased estimates of the effects. There is an essential “trade off … between recognizing the
ordering  of  the  responses  and  losing  the  flexibility  in  specification  offered  by  unordered  outcome
models.”69

65 Washington, et al. (2011), p. 358.

66 Ibid.

67 Greene (2003), p. 738.

68 Washington, et al. (2011), p. 345.

69 Ibid., p. 359.



Specific Model Discussion and Examples

In  addition  to  the  more  general  properties  mentioned  above,  some  of  the  specific  models  have
additional  properties  that  may  make them desirable  or  undesirable.  In  addition  to  specifics  of  the
various models, examples of the models in applied settings will be provided.

Ordered Logit and Ordered Probit
The above sections outline the basic differences between various discrete choice models. Ordered logit
and ordered probit models vary only in their choice of distributional assumption. For reference, ordered
logit  models  assume  a  logistic  distribution  on  the  random  disturbance  term,  while  ordered  probit
models assume a normal distribution. There is a slight preference for the ordered probit model due to
the normality  assumption,  which,  barring  evidence  that  it  is  invalid,  is  convenient,  but  there  is  no
inherent theoretical basis for that preference and the practical differences are likely small. The models
have no additional specific properties that require additional discussion.

O’Donnell and Connor provide an example of using an ordered logit to examine injury severity. 70 Their
study focuses on comparing the results to that of an ordered probit model on the same data. As noted
earlier,  the  theoretical  prediction  of  similar  results  is  validated,  though  there  are  aspects  of  the
modeling  methodology  in  this  paper  that  should  not  be  replicated.  Specifically,  the  authors  use  a
measure of model fit (the Schwarz Bayesian Information Criterion (SBIC)) to aid in selecting variables for
inclusion in the model. Starting with a large set of variables, variables were removed algorithmically as
determined by the SBIC formula. Thus, the models presented in this paper may be prone to overfit,
reducing the actual usefulness of the model outside of its specific dataset.

Kockelman and Kweon provide a good example of an ordered probit in practice, again examining injury
severity.71 Lauer  examines  educational  attainment  in  France  and  Germany  using  an  ordered  probit
framework.72 Xie et al. provide a good example of an ordered probit model implemented in a Bayesian
framework (in addition to a frequentist framework).73

Multinomial Logit
Multinomial logits (MNL) are the most studied version of the multinomial models. The multinomial logit
has several features that make it distinct from the multinomial probit. In terms of model comparison,
MNL models are best compared to ordered logits and multinomial probits.

The first feature of a MNL model that distinguishes it from a multinomial probit is the distribution of the
random disturbance terms. In the MNL framework, the random disturbances for different choices are

70 O'Donnell and Connor (1996).

71 Kockelman and Kweon (2002).

72 Lauer (2003).

73 Xie et al. (2009).



assumed to be uncorrelated.74 In other words, the unobserved variables that influence the probability of
choice A are entirely unrelated to the unobserved variables that influence the probability of choice B.
This property may not hold in reality, resulting in faulty estimates from the model.

A direct result of the assumption regarding the correlation of the random disturbances is what is called
the  independence  of  irrelevant  alternatives  (IIA)  property.  Specifically,  the  ratio  of  any  two choice
probabilities  is  independent  of  the  probabilities  of  any  other  possible  choices. 75 This  is  often
characterized in the red bus-blue bus problem:

“…consider the estimation of a model of choice of travel mode to work where the alternatives
are to take a personal vehicle, a red transit bus, or a blue transit bus. The red and blue transit
buses clearly share unobserved effects that will appear in their disturbance terms and they will
have exactly the same functions [choice probabilities] if the only difference in their observable
characteristics is their color. For illustrative purposes, assume that, for a sample commuter, all
three modes have the same value [from the model]…(the red and blue bus will, and assume that
costs, time, and other factors that determine the likelihood of the personal vehicle being chosen
works out to the same value as the buses). The predicted probabilities yield each mode with a
33% chance of behind selected. This outcome is unrealistic since the correct answer is a 50/50
chance of taking a personal vehicle and a 50/50 chance of taking a bus (both red and blue bus
combined) and not 33.33% and 66.67%, respectively, as the [multinomial logit] would predict.
The consequences of an IIA violation are incorrect probability estimates.”76

The  MNL  also  has  another  undesirable  property  in  regards  to  parameter  estimation.  Specifically,
“estimable parameters relating to variables that do not vary across outcome alternatives can, at most,
be estimated in I-1 of the functions determining the discrete outcome (I is the total number of discrete
outcomes).”77 For example, suppose gender were a relevant variable to a model of mode choice. If there
were three choices (e.g., bus, train, or automobile), the model could only estimate the effect of being
male on the two out of three choices. This is a fairly severe limitation of the multinomial logit model if
there are a large number of effects that are of interest, but do not vary across categories. One potential
way  to  address  this  is  to  normalize  the  coefficients  for  one  outcome (the  “base”  outcome).  Thus,
parameters  for  variables  that  do  not  vary  across  categories  can  be  estimated  for  the  remaining
categories. The coefficients are then interpreted as a change relative to the base outcome.

As noted above, MNL models see extensive use in practice (especially in comparison to multinomial
probit  models).  Islam and Mannering  provide a good example of  a  multinomial  logit  being used to
examine injury severity.78 Dow and Endersby provide an example of a multinomial logit looking at voter

74 Greene (2003)., p. 724

75 Ibid., p. 724

76 Washington, et al. (2011)., p. 326

77 Ibid., p. 318.

78 Islam and Mannering (2006).



behavior in comparison to a multinomial probit model.79 Finally, Schneider IV et al. also examine injury
severity using a multinomial logit framework.80 Additional discussion of the theoretical aspects of the
multinomial logit specifications can be found in Washington et al. and Greene. 81 There are extensions to
the MNL model that seek to relax some of these restrictions, such as IIA. Two of the most common
extensions are nested logit and random parameter models. A brief discussion of these extensions can be
found in Appendix C.6.

Multinomial Probit
Like multinomial logit models, the multinomial probit is an unordered discrete choice specification. It is
not commonly used due to be “the difficulty in computing the multivariate normal probabilities….”82

However, with the challenges of estimation come some benefits.

The major benefit of a multinomial probit as compared to a multinomial logit is the lack of correlation
structure on the random disturbances. Recall that in a multinomial logit, the random disturbance terms
were assumed to be uncorrelated for different alternatives. Multinomial probits have no such restriction
on the correlation and allow a freer set of correlations between disturbance terms. 83 This translates
directly into another benefit: multinomial probit models do not have the IIA property. Further discussion
of  the  multinomial  probit  model  can  be  found  in  Greene  and  Washington  et  al.  In  general,  the
multinomial  probit  specification  appears  to  be  preferable  to  the  multinomial  logit  due  to  the  less
stringent assumptions of the multinomial probit model.  However,  computational difficulty remains a
major challenge and is the major disadvantage of a multinomial probit framework. The likelihood for the
multinomial probit specifications contains the standard normal cumulative distribution function (CDF),
which has no closed form solution. Thus, the likelihood function has no closed form solution.84 Due to
the multiple integrals required for multinomial models, evaluating these expressions can be extremely
computational intensive compared to the logit specification.85

An example of a multinomial probit in applied work can be found in Dow and Endersby. 86 In addition to
implementing the model, the authors provide some additional  insight into the comparison between

79 Dow and Endersby (2004).

80 Schneider IV, et al. (2009).

81 Washington, et al. (2011)., Greene (2003).

82 Greene (2003), p. 728.

83 Ibid., p. 728.

84 Washington, et al. (2011), p. 312.

85 Greene (2003)., p. 728

86 Dow and Endersby (2004).



multinomial logit and probit models. Horowitz (1980) provides another comparison of multinomial logit
and probit models.87 Further commentary on why a multinomial probit specification may be preferable
can be found in Horowitz (1991).88

4.2.Methods chosen

Given the discussion above, it is clear that each model has some pros and cons associated with it. As
noted earlier, it is important for not only the chosen model to be desirable, but also the comparison
models. Recall that the decision criteria for a model to be desirable included tractability, precision, and
how well  it  reflects reality.  The specific  nature of  the runway incursion data  does not  suggest  any
particular  model  choice.  Though  the  data  does  have  some  sense  of  ordering  to  the  categories,
multinomial models provide some advantages in terms of analysis, especially as the ordering present in
the data may be the result of multiple processes.

Due to the nature of the data (i.e., severity ratings from A to D), it was initially desired to focus on the
analysis on the ordered family of models. However, as discussed below, the assumptions of the ordered
model were not satisfied in many cases.89 This led to the use of multinomial models to relax the ordering
constraint. Logit models were chosen over probit models due to computational simplicity, similarity in
results when a subset of models were compared head-to-head, and evidence that that the assumption
of IIA is not violated with these data.

4.3.Models

The models presented below do not contain all of the variables presented in the previous chapter. The
results of the tests presented in that section helped inform the modeling process. Though the ordering
models’ assumptions may not be satisfied, the results are presented for comparison and completeness.
Also note that these results are restricted to only OE incidents, limiting the sample size and the variables
that could be included. Finally, the dependent variable is the severity of the incident, with category A
being considered most severe and given a rank of four.

4.3.1. Aircraft

This model contains variables relating to the aircraft involved at the time of the incident. The results of
the ordered model are presented in Table 183. Category D incursions were excluded due to the inclusion
of the variable measuring the number of aircraft involved. As Category D incursions involve only one
aircraft by definition, including category D incursions obscures the true impact of the number of aircraft
on severity.

87 Horowitz (1980).

88 Horowitz (1991).

89 As an aside, ordered probit models were also run. They gave very similar results, leading to the conclusion that
the distributional differences between logit and probit models are of little consequence for this data.



Table 183 – Ordered Logit Model for Aircraft Variables

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB

# of Aircraft Involved .556 .312 0.08 -.056 1.17

Commercial Carrier -1.11 .319 0.00 -1.73 -.482

Landing .380 .321 0.24 -.248 1.01

Takeoff .762 .282 0.01 .209 1.31

Daily Operations90 .001 .002 0.61 -.003 .005

N = 866 LR Chi-Squared Stat: 23.91

LL = -293.21923 LR P-value: 0.00

LL0 = -305.17656 Ordered Test P-value: 0.67

The sign of  the coefficients  can be interpreted just  as  they would for  simple  logits:  positive values
increase the likelihood of the incursion being rated as a category A while negative values decrease that
likelihood.91 The opposite impact is had for category C incursions – positive indicates less chance of
being a category C while negative increases the probability of being category C. The impact on category
B is ambiguous and requires further calculations to determine.

The signs of variables are consistent with many of the conclusions drawn in Section 3.3. Takeoff is still
more dangerous than taxiing.  The impact of  landing is  not statistically  different from zero (i.e.,  the
model cannot distinguish if there is a change in probability due to landing or not). Commercial carrier
status reduces the likelihood of a category A incident. The daily operations at an airport appear not to
impact the likelihood of a category A incident, once these other variables are controlled for. Finally,
additional aircraft increase the likelihood of a category A incident.

Interestingly, this model satisfies the constraints on the ordered logit model.92 This is likely due to the
exclusion of the category D incursions. To be consistent with the other categories, the results of binary

90 The units on Daily Operations are actually tens of daily operations. Thus the coefficient represents the marginal
impact of an additional 10 operations per day.

91 For more information on interpreting the results of regression output, please see Appendix C.4.

92 This can be determined from the “Ordered Test P-value” reported in the footer of Table 158. The ordering test
tests  the  hypothesis  that  the  effects  of  the  model  variables  are  consistent  across  all  category  types.  The
insignificant test statistic (0.67) thus indicates that the impacts of the variables are consistent across the three
severity categories.



logit – similar to those presented in Section 3.3 – and of a multinomial logit are presented below. They
are broadly consistent with the ordered model, though the multinomial model provides a more nuanced
look  at  the  relationship  among  these  variables.  The  consistency  is  not  surprising  given  that  the
assumptions of the ordered logit are satisfied.

Table 184 – Binary Logit of Aircraft Variables

Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB
# of Aircraft Involved 1.75 .549 0.08 .943 3.23

Commercial Carrier .335 .107 0.00 .180 .626

Landing 1.47 .471 0.23 .781 2.75

Takeoff 2.08 .589 0.01 1.20 3.63

Daily Operations 1.00 .002 0.64 .997 1.01

N = 866 LR Chi-Squared Stat: 22.96

LL = -243.10764 LR P-value: 0.00

LL0 = -254.58853

The binary logit results are almost identical to the ordered results – though they are presented in odds
ratio form. Recall that category D incursions are excluded, making the alternative category C only. The
stability  of  the  relationships  indicates  that  collapsing  categories  A  and  B  had  little  impact  on  the
estimate of the effect of these variables. The multinomial results presented below offer a slightly more
in-depth look at these effects.

Table 185 – Multinomial Logit of Aircraft Variables

Variable Coefficient Standard Error P-Value 95% CI LB 95% CI UB
B: # of Aircraft Involved 0.4036986 0.4884421 0.41 -0.5536302 1.3610270

B: Commercial Carrier -1.0894810 0.5035568 0.03 -2.0764340 -0.1025275

B: Landing 0.4045899 0.4603749 0.38 -0.4977282 1.3069080

B: Takeoff 0.1697855 0.4759628 0.72 -0.7630844 1.1026550

B: Daily Operations 0.0003766 0.0034865 0.91 -0.0064568 0.0072099

A: # of Aircraft Involved 0.650676 0.3879667 0.09 -0.1097248 1.411077

A: Commercial Carrier -1.113953 0.3994795 0.01 -1.896918 -0.3309872

A: Landing 0.3683587 0.4276108 0.39 -0.469743 1.20646

A: Takeoff 1.0542 0.3463956 0.00 0.3752774 1.733123

A: Daily Operations 0.0014655 0.0027573 0.60 -0.0039387 0.0068696



N = 866 LR Chi-Squared Stat: 26.84

LL = -291.75439 LR P-value: 0.00

LL0 = -305.17656

With the ability to distinguish between category A and B, some additional insights arise. It is important
to note that the total change in probably across categories must equal zero as the total probability
across categories is  constrained (i.e.,  you must be in one of these categories, so a reduction in the
probability  of  one  category  must  be  countered  by  an  increase  in  the  probability  of  another).  For
example, commercial carrier status reduces the probability of a category B incursion by approximately .
03 (from approximately p = .047 to approximately p = .017)93. The likelihood of a category A incursions is
reduced  by  approximately  .045.  Therefore,  commercial  carrier  status  increases  the  likelihood  of  a
category C incursion is increased by approximately .075.

Another  lesson  to  take  from this  is  that,  although  the  variable  had  a  similar  estimated  coefficient
between  categories,  the  impact  in  terms  of  probability  can  be  different.  This  is  a  function  of  the
formulation  of  the  multinomial  logit  model.  Thus,  all  coefficients  must  be  interpreted  in  terms  of
changes in probability within their category, rather than directly compared across categories. The results
of  the categorical  variables  (in  this  case  commercial  carrier  status  and  aircraft  phase  of  flight)  are
presented in Table 186. The figures following that table provide the impact of the continuous variables
on each category. In both the table and figures, the variables not changing are held at their mean.

Table 186 – Change in Probability of Severity Categories for Categorical Variables

Category C Category B Category A
Commercial Carrier Status .07 -.03 -.0594

Takeoff -.03 .01 .02

Landing -.06 .00 .06

93 In many cases, the probability of being a category A or category B event for these multinomial models is quite
low. This is partially due to the fact that severe incidents are rare and the overwhelming majority of incidents are
category C. Thus, while the absolute value of the change may be small, it may be large in percentage terms.

94 Note that changes in probability may not add one due to rounding.



Figure 46 – Impact on Probability of Severity Categories of Number of Aircraft



Figure 47 – Impact on Probability of Severity Categories of Daily Operations, Aircraft

The impact of the number of daily operations is fairly slight (not surprising given that the coefficients are
not statistically significant). Number of aircraft, on the other hand, appears to increase the probability of
category A fairly dramatically as the number of aircraft involved increases.

As noted above, the disparity between categories A and B are of interest. The model does not appear to
describe the underlying process of category B incursions very well. The variables that appear significant
in the ordered model appear to maintain significance only for category A (and only moderately for the
number of aircraft). Thus, it appears that the impact of number of aircraft and aircraft phase of flight are
localized to category A incursions rather than category B.

Finally, it is important to check that the assumptions underlying the multinomial logit model are met. As
noted earlier, the major assumption for a multinomial logit model is that of IIA. Testing for violation of
IIA revolves around estimating models excluding one alternative at a time and comparing coefficients.
While the test statistics and associated p-values are presented, research suggests that these tests are



not particularly useful for testing for violations of the IIA assumption.95,96 While the test for violation of
IIA is not particularly powerful, it represents the best available test. Additionally, information from the
test can be combined with prior  knowledge of  the categorization (i.e.,  ranking) system for a better
understanding of the IIA issue. The following table presents the results of a test for IIA in this model. 97

Insignificant test statistics suggest that the IIA assumption is valid in this case. For this model, the test
statistics are insignificant regardless of which outcome is removed.

This model provides some interesting insights. First, it appears that amount of daily traffic at an airport
does not have an impact on incident severity in the presence of these other variables. This is in contrast
to models presented in subsequent section and is likely due to the exclusion of category D incursions.
Second, phase of flight (specifically takeoff) appears to impact category A incursions, rather than both
categories A and B. This is possibly a definitional effect, rather than a true relationship with severity.
Similarly, number of aircraft involved appears to only increase the likelihood of category A incursions
rather than both severe categories (although the coefficient is barely significant at a wider 10% criterion;
also recall the earlier caution about multiple comparisons). Commercial carrier status appears to reduce
the likelihood of both severe categories. This may be related to pilot experience, but it is surprising that
that effect would show up for OE incidents as well.  This further supports the idea that commercial
carriers and GA pilots must be considered separately, even from a controller’s perspective.

Table 187 – Results of IIA Test for Aircraft Variables

Omitted Outcome Chi-Squared
Stat

Degrees of
Freedom

P-Value

C 2.65 6 0.85

B 0.93 6 0.99

A 3.86 6 0.70

4.3.2. Airport

This set of models examines the physical characteristics of the airport at which the incursion occurred. It
is  important  to  note  that  the variables  in  these models  do not  vary  by  incursion (in  general).  This
introduces a problem into the model in that the errors (in a statistical sense) are possibly correlated

95 Long and Freese (2006).

96 Despite the lack of a sufficient test for the IIA assumption, it does not appear to be a problem with this data.
The severity categories represent a mutually exclusive set of categories that describe the entirety of the severity
spectrum. Thus, the dismissal of IIA as a problem is based both on the evidence of the (albeit weak) tests and
theoretical ground. 

97 The tests presented in this section are derived from the Stata package called SPost. The package performs the
Hausman-McFadden  tests  for  IIA  using  Stata’s  built  in  command  suest.  The  test  focuses  on  comparing  the
coefficients for a model containing all alternatives to models removing one alternative at a time. More information
can be found in:  J. Scott Long and Jeremy Freese (2005) Regression Models for Categorical Outcomes Using Stata.
Second Edition. College Station, TX: Stata Press.



between observations. This affects the standard errors estimated from the model. It is unlikely to cause
a major shift in standard errors, given that there are a large number of airports involved. While there are
repeated observations at the same airport, they are not so common (relatively) as to dominate the
estimation  sample.  Future  research  into  airport  models  could  attempt  to  account  for  repeated
observations at the same airport via clustering or another method.

The results of the ordered model are presented below. This model does not satisfy the assumptions of
the ordered model (as seen by the Ordered Test  P-value in Table 188).  However,  when category D
incursions are excluded (as seen in Table 189),  the model does conform to the assumptions of  the
ordered  model.  This  supports  the  idea  that  category  D  incursions  follow  a  separate  process  from
categories A through C and may not be part of the same continuous ordering. 

Table 188 – Ordered Logit Results for Airport Variables

Variable Coefficient Standard Error P-Value 95% CI LB
95% CI

UB
# of Runway Intersections 0.1138214 0.0653972 0.08 -0.0143546 0.241998

# of Runways -0.3065381 0.0961104 0.00 -0.4949109 -0.11817

# of Hotspots -0.0728477 0.0390897 0.06 -0.1494621 0.003767

Difference of AC/AT and 
GA Percents 0.3109389 0.2970045 0.30 -0.2711793 0.893057

AC/AT Percent of Traffic -0.4287666 0.2952404 0.15 -1.0074270 0.149894

Daily Operations 0.0102631 0.0021114 0.00 0.0061248 0.014401

N = 969 LR Chi-Squared Stat: 28.09

LL = -608.22534 LR P-value: 0.00

LL0 = -622.2712 Ordered Test P-value: 0.00

Table 189 – Ordered Logit Results for Airport Variables, Conflict Only

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
# of Runway Intersections 0.23436 0.1002157 0.019 0.037941 0.430779

# of Runways -0.319587 0.164589 0.052 -0.64218 0.003002

# of Hotspots -0.0972646 0.0650232 0.135 -0.22471 0.030178

Difference of AC/AT and 
GA Percents 0.3864231 0.4578904 0.3990000 -0.51103 1.283872

AC/AT Percent of Traffic -0.6208724 0.3972058 0.1180000 -1.39938 0.157637

Daily Operations 0.0045543 0.0032610 0.1630000 -0.00184 0.010946



N = 870 LR Chi-Squared Stat: 14.50

LL = -295.42478 LR P-value: 0.02

LL0 = -302.67675 Ordered Test P-value: 0.13

Although the overall model is invalid because of the ordering assumption, it is still worth noting some of
the  results.  First,  number  of  runway  intersections  plays  a  role.  When  excluding  category  D,  this
variable’s coefficient is both larger and considered more significant (but is less precisely estimated). This
same situation can be seen for overall runway count, although the effect is in the opposite direction,
reducing severity. The number of hotspots at an airport is only (marginally) significant when category D
incursions  are  included.  The  expectation  is  that  this  variable  may  help  explain  category  D  in  the
multinomial model, and no other categories. A similar expectation is held for daily operations, which
serves as an overall control on the frequency of incursions (i.e., incursions are more likely with more
traffic,  even  if  the  rate  of  incursions  per  operations  is  constant),  yet  is  no longer  significant  when
category D incursions are excluded. Thus, daily operations may help explain category D but not the other
categories.

As discussed above, a simpler alternative to the multinomial model is to combine categories C and D and
categories A and B. While ultimately a loss of detail, these models are simpler to interpret and focus the
discussion on the impact on severe incursions – the categories of most interest for preventing crashes.
The results of this binary logit are presented in Table 190.

Table 190 – Binary Logit Results for Airport Variables

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

# of Runway Intersections 1.26122 0.1256319 0.02 1.037532 1.533134

# of Runways 0.7033451 0.1159668 0.03 0.509124 0.971659

# of Hotspots 0.8994699 0.058366 0.10 0.79205 1.021458

Difference of AC/AT and 
GA Percents 1.4833310 0.6772210 0.39 0.606204 3.629591

AC/AT Percent of Traffic 0.5566192 0.2192933 0.14 0.257162 1.204784

Daily Operations 1.0058800 0.0032209 0.07 0.999587 1.012212

N = 969 LR Chi-Squared Stat: 14.52

LL = -254.1839 LR P-value: 0.02

LL0 = -261.44236

The results for the binary logit are not dissimilar to those for the ordered model with all four severity
categories. As in the ordered model, number of runway intersections increases the likelihood of a severe



event. The impact is actually comparable in size to the impact in the ordered model, though these are
expressed as odds ratios: for each additional runway intersection, the odds of a severe incursion are
increased by approximately 25%. Counteracting this is the impact of having additional runways, which
reduces the odds of a severe incursion by approximately 30% for each additional runway. Exposure (i.e.,
total operations) also plays a role in increasing severity, as seen in the ordered model; however, its
impact is marginal at best.

The results from the multinomial logit support many of the conclusions drawn above. There are no
categorical  variables,  so  the impacts  of  all  variables  are depicted in the following charts.  As in  the
ordered and binary models, increasing numbers of runway intersections are associated with increased
severity. This change in probability appears to result from a decrease in the probability of category C
incursions. This may suggest that runway intersections are associated with conflict events rather than
category D incursions.

Table 191 – Multinomial Logit Results for Airport Variables

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
D: # of Runway 
Intersections -0.0298008 0.0789456 0.71 -0.18453 0.12493

D: # of Runways 0.3194948 0.1353774 0.02 0.05416 0.58483

D: # of Hotspots 0.0281814 0.0526785 0.59 -0.07507 0.131429

D: Difference of AC/AT and
GA Percents 0.4109714 0.4275559 0.34 -0.42702 1.248966

D: AC/AT Percent of 
Traffic 0.3618836 0.3922496 0.36 -0.40691 1.130679

D: Daily Operations -0.0200377 0.0039995 0.00 -0.02788 -0.0122

B: # of Runway 
Intersections 0.2856436 0.1629479 0.08 -0.03373 0.605016

B: # of Runways -0.3129901 0.2331212 0.18 -0.7699 0.143919

B: # of Hotspots -0.3321268 0.1353336 0.01 -0.59738 -0.06688

B: Difference of AC/AT and
GA Percents 0.5351369 0.7505647 0.48 -0.93594 2.006217

B: AC/AT Percent of Traffic -0.0665126 0.6102332 0.91 -1.26255 1.129523

B: Daily Operations 0.0046776 0.0054149 0.39 -0.00594 0.015291

A: # of Runway 
Intersections 0.2200878 0.1245765 0.08 -0.02408 0.464253

A: # of Runways -0.3580728 0.225181 0.11 -0.79942 0.083274

A: # of Hotspots -0.0091251 0.0725845 0.90 -0.15139 0.133138



Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
A: Difference of AC/AT and
GA Percents 0.2301513 0.5724773 0.69 -0.89188 1.352186

A: AC/AT Percent of Traffic -0.8456367 0.5073891 0.10 -1.8401 0.148828

A: Daily Operations 0.0046211 0.0039781 0.25 -0.00318 0.012418

N = 969 LR Chi-Squared Stat: 67.16

LL = -588.69072 LR P-value: 0.00

LL0 = -622.2712

Table 192 – Results of IIA Test for Airport Variables

Omitted Outcome Chi-Squared
Statistic

Degrees of
Freedom

P-Value

D 6.71 14 0.95

C 10.40 14 0.73

B 8.53 14 0.86

A 9.03 14 0.83



Figure 48 – Impact on Probability of Severity Categories of Number of Runway Intersections

The effect of number of runways appears, on the other hand, to be mostly a shift  from the severe
categories to category D. One potential explanation is that increased alternative runways can reduce the
number of operations that could conceivably conflict. The impact of this variable is also fairly dramatic
across the range seen in the dataset.



Figure 49 – Impact on Probability of Severity Categories of Number of Runways

Number of hotspots presents an interesting effect. The only severity category that appears to change
over the range of this variable is category B. Overall, the impact of this variable appears to be to reduce
severity – both categories C and D to increase in area on the chart. However, the impact on category B is
still surprising.



Figure 50 – Impact on Probability of Severity Categories of Number of Hotspots

Daily operations also have a fairly strong impact. The impact is consistent with that seen in the ordered
and binary models as well as models containing other sets of variables. The increased severity is likely
explained by the increased probability of a conflict event, although the relative probability of category A
incursions increases over the range of the variable.



Figure 51 – Impact on Probability of Severity Categories of Daily Operations, Airports



Figure 52 – Impact on Probability of Severity Categories of Percent of AC/AT Traffic



Figure 53 – Impact on Probability of Severity Categories of Difference between Percent AC/AT and GA Traffic

4.3.3. Radar

These models  encompass  the various  radar  technologies  available  in  the dataset.  This  allows for  a
comparison between the various systems and their impacts on severity.

It is important to note that the ASDE flag in this mode represents any form of ASDE; no distinction was
made in the Runway Incursion dataset between ASDE-3 (or earlier) and ASDE-X. Additionally, ARTS was
into simplified into variables representing their major version numbers (II or III).

Table 193 – Ordered Logit Results for Radar Variables

Variable Coefficient Standard Error P-Value 95% CI
LB

95% CI
UB

STARS -0.9624492 0.2781872 0.00 -1.50769 -0.41721

ASDE -0.3037916 0.2797329 0.28 -0.85206 0.244475

STARS & ASDE 0.7448619 0.3988561 0.06 -0.03688 1.526606



Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
ARTS II -0.0827244 0.3026437 0.79 -0.6759 0.510446

ARTS III -0.0530018 0.2529053 0.83 -0.54869 0.442684

Daily Operations 0.0044514 0.0016586 0.01 0.001201 0.007702

N = 970 LR Chi-Squared Stat: 25.61

LL = -612.52423 LR P-value: 0.00

LL0 = -625.33029 Ordered Test P-Value: 0.00

As these are a series of binary flags, it is important to remember that the alternative to these variables is
that the respective system is not in place. Neither ARTS nor ASDE appears to reduce incident severity for
OE incidents. STARS, on the other hand, appears to provide some benefit in terms of reducing severity.
Interestingly, the interaction between STARS and ASDE is significant at approximately the 6% level. This
is  inconsistent  with  the  results  seen  in  Table  113,  which  indicated  the  interaction  effect  was
insignificant. Additionally, the evidence of the benefit of ASDE seen in Table 111 is no longer observed,
likely due to the inclusion of daily operations, which is highly correlated with ASDE (correlation = 0.58).
Overall, the model with four severity alternatives does not satisfy the ordering constraint, indicating that
these results are not indicative of the true relationship between these variables and severity. When
excluding category D events, the ordering constraint is met, but no variable is significant.

Table 194 – Ordered Logit Results for Radar Variables, Conflict Only

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
STARS -0.6332751 0.4316348 0.14 -1.47926 0.212714

ASDE -0.5749929 0.4047233 0.16 -1.36824 0.21825

STARS & ASDE 0.2015302 0.6916822 0.77 -1.15414 1.557202

ARTS II -0.3675354 0.4071408 0.37 -1.16552 0.430446

ARTS III 0.0167015 0.3236412 0.96 -0.61762 0.651027

Daily Operations -0.0013387 0.0024641 0.59 -0.00617 0.003491

N = 871 LR Chi-Squared Stat: 9.48

LL = -300.88941 LR P-value: 0.15

LL0 = -305.62813 Ordered Test P-value: 0.12



The binary results are similar to the ordered model. Interestingly, nothing is significant at the standard
five percent level (STARS is significant at a 7% level and is the only variable significant at a reasonable
level).

Table 195 – Binary Logit Results for Radar Variables

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

STARS 0.4629815 0.1987276 0.07 0.199618 1.073813

ASDE 0.5537793 0.2268481 0.15 0.248115 1.236003

STARS & ASDE 1.342735 0.9269527 0.67 0.347029 5.195347

ARTS II 0.6845135 0.2769926 0.35 0.309698 1.512955

ARTS III 0.9808792 0.3165585 0.95 0.521084 1.846389

Daily Operations 0.9997259 0.0024566 0.91 0.994923 1.004552

N = 970 LR Chi-Squared Stat: 9.47

LL = -259.27121 LR P-value: 0.15

LL0 = -264.00835

Table 196 – Multinomial Logit Results for Radar Variables

Variable Coefficient Standard Error P-Value 95% CI
LB

95% CI
UB

D: STARS 0.808187 0.316595 0.01 0.187673 1.42870
2

D: ASDE -0.14364 0.459665 0.76 -1.04457 0.75728
6

D: STARS & ASDE -0.32037 0.574702 0.58 -1.44676 0.80602
4

D: ARTS II -0.27576 0.373263 0.46 -1.00734 0.45582
4

D: ARTS III 0.157731 0.345069 0.65 -0.51859 0.83405
4

D: Daily Operations -0.01308 0.003128 0.00 -0.01921 -0.00695

      

B: STARS -0.73312 0.593334 0.21 -1.89603 0.42979
3



Variable Coefficient Standard Error P-Value 95% CI
LB

95% CI
UB

B: ASDE -0.59063 0.635622 0.35 -1.83643 0.65516
5

B: STARS & ASDE -14.0723 789.7078 0.99 -1561.87 1533.72
7

B: ARTS II -1.40895 0.780987 0.07 -2.93965 0.12176

B: ARTS III -0.40292 0.472102 0.39 -1.32823 0.52238

B: Daily Operations -0.00125 0.003835 0.75 -0.00876 0.00627

      

A: STARS -0.55095 0.606281 0.36 -1.73924 0.63733
6

A: ASDE -0.58461 0.516016 0.26 -1.59598 0.42676

A: STARS & ASDE 0.871079 0.828519 0.29 -0.75279 2.49494
5

A: ARTS II 0.162622 0.498048 0.74 -0.81353 1.13877
9

A: ARTS III 0.319417 0.434934 0.46 -0.53304 1.17187
1

A: Daily Operations -0.00116 0.003141 0.71 -0.00731 0.00499
8

N = 970 LR Chi-Squared Stat: 66.48

LL = -592.08992 LR P-value: 0.00

LL0 = -625.33029

Table 197 – IIA Test Results for Radar Variables

Omitted Outcome
Chi-Squared

Stat
Degrees of
Freedom

P-Value

D 9.7x10^8 14 0.00

B 5.74 14 0.97

A 1.6x10^10 14 0.00

C 5.9x10^10 14 0.00



The multinomial  model does little  to clarify the results.  Additionally,  note that this  model does not
satisfy  the  IIA  assumption  when  category  B  incursions  are  excluded.  Although  these  tests  are  not
particularly powerful, it is important to acknowledge that this model might violate that assumption in
some cases.  Because this  is  a  series  of  flags  with  interactions,  the  predicted  probabilities  for  each
category are depicted in Table 198. The baseline airport has ARTS II.

Table 198 – Predicted Probabilities for Different Radar Combinations

STARS ASDE
STARS

&
ASDE

ARTS-
II

ARTS_III
Probability of

Category D
Probability of

Category C
Probability of

Category B
Probability of

Category A

YES YES YES YES NO 0.08 0.88 0.00 0.05

NO YES NO YES NO 0.05 0.91 0.01 0.04

YES NO NO YES NO 0.12 0.84 0.01 0.04

NO NO NO YES NO 0.05 0.87 0.02 0.06

Figure 54 depicts the impact of daily operations on severity categories. The only category for which this
variable is significant is category D. As seen in other models containing this variable, increased daily
operations are associated with increased severity.



Figure 54 – Impact on Probability of Severity Categories of Daily Operations, Radar

It  appears  that,  as seen in the ordered and binary  models,  STARS reduces the likelihood of  severe
incidents; however, this appears to be mostly a reduction in category C. Adding ASDE to STARS actually
increases the likelihood of category C compared to only STARS, but ASDE alone also reduces the of
likelihood of  conflict incidents. As mentioned previously, it is possible that these effects are capturing
the distribution of radar among airports. That is, ASDE is may be deployed at mostly busier airports that
are more likely to have conflict events (due to the higher traffic). Additionally, the model coefficients are
not precisely estimated – even when they are statistically different from zero. Thus, this model suggests
that STARS may have some benefit in terms of reducing severity, but the results on other radar systems
are inconclusive and provide little information beyond that provided by the categorical tests presented
in Section 3.3.4.



4.3.4. Controller

These models examine the characteristics  of  the controller  involved in the incident.  Recall  that the
sample is only OE incidents, so in some sense these describe the controller responsible for the incident.
The ordered results (including all severity categories) are presented below.

Table 199 – Ordered Logit Results for Controller Variables

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
Age 0.0137436 0.0113773 0.23 -0.00856 0.036043

Time on Shift 0.0002362 0.0004877 0.63 -0.00072 0.001192

Training in Last Year 0.070188 0.2586886 0.79 -0.43683 0.577208

Workload 0.1248622 0.0295402 0.00 0.066965 0.18276

Daily Operations 0.0012988 0.0014647 0.38 -0.00157 0.00417

N = 780 LR Chi-Squared Stat: 25.27

LL = -491.74876 LR P-value: 0.00

LL0 = - 504.38492 Ordered Test P-Value: 0.00

Note that the ordering assumption for this model is violated. This is consistent with the other ordered
models presented in this section that contain all four severity categories. Additionally, very few of the
variables seem to explain the variation in incursion severity. The only variable that is significant (for all
severity  categories  or  for  conflict  events  only)  is  controller  workload  (the  number  of  aircraft  the
controller  is  responsible for at  the time of  the incident).  When excluding category D incidents,  this
variable is only marginally significant at the 10% level. Daily operations are also significant at the 10%
level in the conflict only model, but with the opposite sign to that seen in other models. In general, it
appears that these ordered models are not particularly informative.

Table 200 – Ordered Logit Results for Controller Variables, Conflict Only

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
Age 0.001266 0.0151437 0.93 -0.02842 0.030947

Time on Shift 0.000753 0.0006008 0.21 -0.00042 0.00193

Training in Last Year 0.07604 0.3602348 0.83 -0.63001 0.782087

Workload 0.061144 0.0337487 0.07 -0.005 0.127291

Daily Operations -0.00378 0.0021747 0.08 -0.00804 0.000486

N = 712 LR Chi-Squared Stat: 6.15



LL = -270.45674 LR P-value: 0.29

LL0 = - 273.53366 Ordered Test P-Value: 0.52

The binary logit results are not much more promising. Controller workload is again the only significant
variable, and maintains the same effect of increasing severity.

Table 201 – Binary Logit Results for Controller Variables

Variable Coefficient Standard Error P-Value 95% CI
LB

95% CI
UB

Age 0.8931086 0.089687 0.26 0.733543 1.087384

Time on Shift 1.001394 0.001176 0.24 0.999091 1.003702

Training in Last Year 1.000619 0.000584 0.29 0.999475 1.001764

Workload 1.022499 0.183874 0.90 0.718776 1.454563

Daily Operations 1.076802 0.035294 0.02 1.009803 1.148247

N = 780 LR Chi-Squared Stat: 7.44

LL = -229.47049 LR P-value: 0.28

LL0 = - 233.19181

Some additional insights are available from the multinomial  model.  This model also satisfies the IIA
assumption. Controller age and the flag for controller training are still insignificant across all categories.
The result for training is not entirely surprising given that most controllers receive runway incursion
training frequently enough that 70% controllers are marked as “yes” in the dataset.

Table 202 – Multinomial Logit Results for Controller Variables

Variable Coefficient Standard Error P-Value 95% CI
LB

95% CI
UB

D: Age -0.0201249 0.014414 0.16 -0.04838 0.008126

D: Time on Shift 0.0001593 0.000657 0.81 -0.00113 0.001447

D: Training in Last Year -0.150851 0.364085 0.68 -0.86445 0.562743

D: Workload -0.3938314 0.078881 0.00 -0.54844 -0.23923

D: Daily Operations -0.0059526 0.002773 0.03 -0.01139 -0.00052

B: Age 0.0232815 0.023268 0.32 -0.02232 0.068885

B: Time on Shift -0.0005547 0.001118 0.62 -0.00275 0.001636

B: Training in Last Year -0.1402045 0.5057 0.78 -1.13136 0.850949



Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
B: Workload 0.0437738 0.053595 0.41 -0.06127 0.148819

B: Daily Operations -0.0038828 0.003307 0.24 -0.01036 0.002599

A: Age -0.0122581 0.019413 0.53 -0.05031 0.025792

A: Time on Shift 0.0012345 0.000657 0.06 -5.4E-05 0.002523

A: Training in Last Year 0.2191219 0.493681 0.66 -0.74847 1.186718

A: Workload 0.067486 0.039652 0.09 -0.01023 0.145203

A: Daily Operations -0.0035337 0.002794 0.21 -0.00901 0.001943

N = 780 LR Chi-Squared Stat: 67.22

LL = -470.776 LR P-value: 0.00

LL0 = - 504.38492

Table 203 – Result of IIA Test for Controller Variables

Omitted Outcome Chi-Squared
Stat

Degrees of
Freedom

P-Value

D 3.059 12 1.00

C 7.297 12 0.84

B 6.789 12 0.87

A 6.123 12 0.91



Figure 55 – Impact on Probability of Severity Categories of Controller Age

The result for age is interesting in its non-significance.98 Figure 55 depicts the impact graphically. While
there is some change in probability over the range, the variable is insignificant for any category. Thus, it
is indistinguishable in a statistical sense from a graph that showed each category as a straight line over
the range of controller age. One might naively expect controller age to contribute to severity – either
through  lowered  reaction  times  or  increased  experience.  It  is  impossible  to  disentangle  those  two
effects without a better measure of these possible causes; those two explanations may both be at play
and counteracting each other. Recall that controller age is also capped artificially by forced retirement.
All in all, it is possible that current practices already account for the impact of age. Regardless, there is
no indication that increased controller age contributes to severity. 

Controller workload is highly significant for category D, but not so for other categories. It is significant at
a lesser 10% level for category A. This likely explains the dramatic increase in category A and decrease in
category D probabilities seen in Figure 56. This is consistent with the effect seen in the ordered and

98 A model was tested with a squared term for age, attempting to account for a nonlinear effect of age as seen in
other behavioral contexts. This did not result in any changes to the model and thus was not reported.



binary models, and supports the intuition that controllers can only handle so many planes before safety
is compromised.

Figure 56 – Impact on Probability of Severity Categories of Controller Workload

Time on shift is significant at the 10% level for category A incursions,  and insignificant for all  other
categories. Figure 57 indicates that the increase in the probability of category A comes mostly at the
expense of category C. This hints that time on shift is associated with increased severity, but does not
appear to impact category B in a statistically significant manner. Over a reasonable range (an 8-hour
shift is approximately 500 minutes) this impact is not large. It is unclear why there are records in the
dataset that have a time on shift three times larger than that. It is possible that these extremely long
shifts represent a data error in the reported shift start and end times.99 When estimated excluding shifts
longer than eight hours,  the impact of time on shift is  not statistically different than zero – further
contributing to the idea that this is a spurious result.

99 While it seems likely these records are an error, the research team was unable to find anyone able to certify
that these shifts were not possible in extreme/unusual circumstances.



Figure 57 – Impact on Probability of Severity Categories of Controller Time on Shift

Finally, daily operations appear to have a different impact than it does in other models. Increased daily
operations appear to increase category C events, but not either of the severe categories. Contrast this
effect to that seen in Figure 51.



Figure 58 – Impact on Probability of Severity Categories of Daily Operations, Controller

Overall, the controller variables shed little insight into severity. The most useful conclusion is perhaps
that  controller  age  does  not  impact  severity.  It  is  also important  to  note  that  increased  controller
workload may contribute to increased severity.  Additionally,  the impact of  time on shift  is  suspect.
Caution when using this  model to draw conclusions is  warranted.  Further  research into controllers,
possibly including controller information for non-incursions, is highly recommended.

4.3.5. Weather

These  models  contain  many  of  the  weather  variables  identified in  previous  sections.  However,  the
advantage  of  the  models  is  that  interactions  between variables  can  be  explored.  This  is  especially
pertinent for weather variables, as many of them are quite closely related. The results of the ordered
model for weather variables are presented below. This model includes all severity categories D through
A.



Table 204 – Ordered Logit Results for Weather Variables

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
Cloud Coverage -0.078913 0.040734 0.05 -0.15875 0.000924

Sea Level Pressure -0.0644932 0.023233 0.01 -0.11003 -0.01896

Cloud Coverage x Sea Level
Pressure 0.0145993 0.004912 0.00 0.004972 0.024227

No Weather Phenomena -0.4790643 0.382549 0.21 -1.22885 0.270717

Wind Speed 0.0220009 0.023522 0.35 -0.0241 0.068103

Daily Operations 0.0040903 0.001568 0.01 0.001016 0.007164

N = 633 LR Chi-Squared Stat: 19.15

LL = -403.55011 LR P-value: 0.00

LL0 = -393.97433 Ordered Test P-Value: 0.00

The  results  of  the  weather  model  are  a  bit  surprising.  Firstly,  cloud coverage appears  to  decrease
severity. This is similar to the result seen in Table 150 where category A incursions had a lower median
cloud coverage (i.e., increased cloud coverage is associated with lower severity), although the individual
categories were not distinguishable from each other in Table 150. It is possible that this is revealing an
overreaction of  sorts  to  increased cloud coverage.  That  is,  operational  changes may occur  (such as
decreased traffic or larger spacing between traffic) that already counteract the increased severity risk
due to the lowered visibility. If that were true, these measures appear to overcorrect (in some sense)
and end up decreasing the likelihood of category A events during cloudy weather.

A similar pattern is seen for sea level pressure – increased sea level pressure is associated with lowered
severity.  This  is  contrary to the results  seen in Table 160, which indicated no relationship between
severity and sea level pressure. Higher sea level pressure is associated with clearer skies and generally
calmer weather, but it is unclear how pressure would directly impact operations on the ground. It is
more likely that pressure impacts the pilot population on a given day. Higher pressure, and calmer
weather,  is  more  amenable  to  GA  pilots  who  are  much  more  likely  to  be  involved  in  category  D
incursions  than their  commercial  counterparts.  It  is  possible  this  change in  pilot  population  is  also
reflected in the severity of OE incidents.

The interaction between cloud coverage and sea level  pressure is  also significant.  Because it  is  the
opposite sign of both cloud coverage and sea level pressure, it has an ameliorating effect on the impact
of those variables. That is, if cloud coverage and sea level pressure are both higher, the interaction is a
mitigating effect – the impact on severity is less than the variables alone would predict. As noted earlier,
a more thorough examination of the impacts of weather on severity is required to better understand
these impacts.



Finally, the indicator for no weather phenomena and wind speed are insignificant. One might expect
that rain, haze, or fog may impact the severity of an incident, but it does not appear to do so. The
exposure variable, as expected, increases the likelihood of a severe incursion.

The results of the test on ordering assumption indicate that this model is invalid. Table 205 presents the
same regression, but excludes category D incursions. The indicator for no weather phenomena is now
significant, but the interaction between cloud coverage and sea level pressure is not. When examining
only conflict events, the assumptions of an ordered model are satisfied. This lends further support to the
idea that category D incursions are not ordered in the same way categories C through A are. It also
suggests the use of a multinomial model to account for the non-ordered nature of all four categories.
Similar to the previous sections, a binary logit is also presented for comparison.

Table 205 – Ordered Logit Results for Weather Variables, Conflict Only

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
Cloud Coverage -0.1898268 0.071915 0.01 -0.33078 -0.04888

Sea Level Pressure -0.0785278 0.034337 0.02 -0.14583 -0.01123

Cloud Coverage x Sea Level
Pressure 0.0115897 0.008594 0.18 -0.00525 0.028434

No Weather Phenomena -1.145536 0.55067 0.04 -2.22483 -0.06624

Wind Speed -0.0433148 0.039672 0.28 -0.12107 0.03444

Daily Operations -0.0026633 0.002723 0.33 -0.008 0.002674

N = 555 LR Chi-Squared Stat: 15.84

LL = -159.33354 LR P-value: 0.01

LL0 = -167.25292 Ordered Test P-Value: 1.00

The binary logit results are similar to the ordered results. The variables maintain their signs, but the
results in terms of significance are more similar to the conflict only model (Table 205) than the all-
inclusive ordered model (Table 204). 

Table 206 – Binary Logit Results for Weather Variables

Variable Odds Ratio Standard Error P-Value 95% CI
LB

95% CI
UB

Cloud Coverage 0.8262223 0.059955 0.01 0.716687 0.952499

Sea Level Pressure 0.9189695 0.031839 0.02 0.858638 0.98354

Cloud Coverage x Sea Level
Pressure 1.013526 0.008749 0.12 0.996522 1.03082

No Weather Phenomena 0.3159954 0.174439 0.04 0.107101 0.932329

Wind Speed 0.9660382 0.03827 0.38 0.893869 1.044035



Variable Odds Ratio Standard Error P-Value
95% CI

LB
95% CI

UB

Daily Operations 0.9983222 0.00271 0.54 0.993025 1.003648

N = 633 LR Chi-Squared Stat: 14.82

LL = -141.76193 LR P-value: 0.02

LL0 = -149.17232

Overall,  the model passes the test for IIA.  As noted earlier,  though, these tests are not particularly
strong but are presented for completeness.  The coefficient results  from the multinomial  model are
mixed.  As  with  the  other  models,  it  is  best  to  examine  the  impact  of  the  variables  as  changes  in
probability for each severity category. There is only one categorical dependent variable in this model
(the flag for no weather phenomena), and its impact is reported in Table 209. The figures following
depict the impact of cloud coverage at various levels of sea level pressure.

Table 207 – Multinomial Logit Results for Weather Variables

Variable Coefficient Standard Error P-Value 95% CI
LB

95% CI
UB

D: Cloud Coverage -0.00198 0.0498018 0.97 -0.09959 0.095625

D: Sea Level Pressure 0.03155 0.0272032 0.25 -0.02177 0.084867

D: Cloud Coverage x Sea 
Level Pressure -0.01379 0.0063144 0.03 -0.02616 -0.00141

D: No Weather Phenomena -0.01055 0.4756608 0.98 -0.94282 0.921732

D: Wind Speed -0.05662 0.0304117 0.06 -0.11623 0.002984

D: Daily Operations -0.01013 0.0027228 0.00 -0.01547 -0.00479

B: Cloud Coverage -0.07176 0.1249049 0.57 -0.31657 0.17305

B: Sea Level Pressure -0.03565 0.0676585 0.60 -0.16825 0.096962

B: Cloud Coverage x Sea 
Level Pressure 0.003223 0.0163779 0.84 -0.02888 0.035323

B: No Weather Phenomena -0.16004 1.160003 0.89 -2.43361 2.113523

B: Wind Speed -0.07913 0.0778411 0.31 -0.23169 0.073439

B: Daily Operations -0.00381 0.0052981 0.47 -0.01419 0.006579

A: Cloud Coverage -0.24032 0.0883936 0.01 -0.41356 -0.06707

A: Sea Level Pressure -0.09377 0.0398574 0.02 -0.17189 -0.01565



Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
A: Cloud Coverage x Sea 
Level Pressure 0.014579 0.0101211 0.15 -0.00526 0.034416

A: No Weather Phenomena -1.51362 0.6315717 0.02 -2.75148 -0.27576

A: Wind Speed -0.02757 0.0455582 0.55 -0.11686 0.061724

A: Daily Operations -0.00215 0.0031654 0.50 -0.00835 0.004053

N = 633 LR Chi-Squared Stat: 48.90

LL = -379.10258 LR P-value: 0.00

LL0 = -403.55011

Table 208 – Results of IIA Test for Aircraft Variables

Omitted Outcome
Chi-Squared

Stat
Degrees of
Freedom

P-Value

D 8.34 14 0.87

C 5.15 14 0.98

B 4.39 14 0.99

A 4.05 14 1.00

Table 209 – Change in Probability of Severity Categories for Categorical Variables, Weather

Category D Category C Category B Category A
No Weather Phenomena .01 .09 -.00 -.10

The  weather  phenomena  flag  has  an  interesting  effect.  It  decreases  the  likelihood  of  the  severe
categories, while increasing the likelihood of category C and D. This type of impact is not able to be
modeled by the ordered model presented previously. It is unclear why good weather would both reduce
the probability of the most and least severe events. There is likely an underlying behavioral change in
good weather – either in the pilot population or in how controllers manage traffic or elsewhere – that is
the source of this impact.



Figure 59 – Cloud Coverage and Sea Level Pressure

The impact of cloud coverage and sea level pressure are also interesting. At relatively low levels of sea
level pressure, increased cloud coverage appears to reduce the probability of category A incursions.
However,  at  relatively  high levels  of  pressure  increased cloud coverage decreases  the likelihood of
category D and increases category C. Not only does the impact of cloud coverage on severity change, it
appears to decreases severity (at low levels of sea level pressure) and alternatively increases severity (at
higher levels of sea level pressure). It is possible that these varying impacts are reflecting operational
changes,  as  well.  As  with  the  indicator  for  weather  phenomena,  further  study  is  required  to  truly
understand this effect. It is likely that an underlying behavioral factor – such as visibility – is truly at play
here, and spurious correlation cannot be ruled out.

Wind  speed  and  exposure  both  appear  to  decrease  the  likelihood  of  a  category  D  incursion.  The
mechanism for exposure is clear: more traffic increases the likelihood of a conflict event. Wind speed is
another matter. As with the many of the weather variables, the only conclusion that can be drawn is
that  there  is  a  correlation,  and the general  direction of  that correlation.  It  is  likely  that  underlying
behavior that is impacted by the weather in turn impacts severity, rather than weather leading directly



to increased or decreased severity. Thus, weather and related behavioral changes appear to be fertile
ground for further research.

4.3.6. “Bouillabaisse”

The models discussed above focus on testing specific sets of variables. The goal of the model presented
in this section is to best  predict severity, given the variables available. This model was developed by
picking the most relevant parts of the previous models and combining them. Fit statistics were used to
help identify those models that were “better” in the numerical sense. While a limited approach, the goal
is to best fit to the data rather than test specific hypotheses. The models presented in this section are
prone to overfit, and may not be generalizable to other datasets or time periods. In other words, this
represents the best  guess  at  predicting the severity  of  runway incursions  but  may not  be the best
explanatory model.

The model presented in this section represents only the best prediction given this single data set and the
models run above; no result from this model should be taken as proof of any causal relationship or a
directive to change any particular policies, practices, or operations.

No ordered or binary logit results are presented for this set of variables. The previous models all point to
a  multinomial  framework  as  being  the  most  useful  in  explaining  all  four  severity  categories.  The
multinomial results are presented below. Note that no weather variables were included in this model.
While potentially interesting, due to limited weather data availability, inclusion of the weather variables
reduced the sample size of the model dramatically. Given the indeterminate conclusions that could be
drawn from the weather variables, they were excluded in favor of a larger sample size.

Table 210 – Multinomial Logit Results for Best Prediction Model

Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
D: Workload -0.3463247 0.06921 0.00 -0.48197 -0.21068

D: Commercial Carrier -0.6666587 0.317992 0.04 -1.28991 -0.04341

D: Takeoff 0.0884049 0.264781 0.74 -0.43056 0.607366

D: Daily Operations -0.0073125 0.003083 0.02 -0.01336 -0.00127

D: # of Hotspots 0.0107307 0.055405 0.85 -0.09786 0.119323

D: AC/AT % of Operations 0.8213881 0.454675 0.07 -0.06976 1.712535

D: # of Runway 
Intersections 0.0400874 0.079078 0.61 -0.1149 0.195077

B: Workload 0.0579266 0.059663 0.33 -0.05901 0.174863

B: Commercial Carrier -1.299852 0.537806 0.02 -2.35393 -0.24577

B: Takeoff 0.0624177 0.44852 0.89 -0.81666 0.9415

B: Daily Operations 0.0031241 0.00443 0.48 -0.00556 0.011806



Variable Coefficient Standard Error P-Value
95% CI

LB
95% CI

UB
B: # of Hotspots -0.3429516 0.132618 0.01 -0.60288 -0.08303

B: AC/AT % of Operations 0.4746274 0.664255 0.48 -0.82729 1.776543

B: # of Runway 
Intersections 0.2052403 0.135995 0.13 -0.06131 0.471786

A: Workload 0.0641569 0.044642 0.15 -0.02334 0.151654

A: Commercial Carrier -0.9109452 0.452898 0.04 -1.79861 -0.02328

A: Takeoff 0.9690437 0.316484 0.00 0.348747 1.589341

A: Daily Operations 0.0024284 0.003431 0.48 -0.0043 0.009153

A: # of Hotspots -0.0124248 0.073299 0.87 -0.15609 0.131239

A: AC/AT % of Operations -0.5265661 0.574409 0.36 -1.65239 0.599254

A: # of Runway 
Intersections 0.1109985 0.097971 0.26 -0.08102 0.303019

N = 947 LR Chi-Squared Stat: 100.00

LL = -537.93165 LR P-value: 0.00

LL0 = -587.933

Table 211 - Results of IIA Test for Best Prediction Model

Omitted Outcome
Chi-Squared

Stat
Degrees of
Freedom

P-Value

D 7.08 16 0.97

C 7.04 16 0.97

B 12.00 16 0.74

A 12.71 16 0.69

Table 212 - Change in Probability of Severity Categories for Categorical Variables, Best Prediction Model

Category D Category C Category B Category A
Commercial Carrier -.03 .09 -.03 -.03

Takeoff .00 -.05 .00 .05

The  precise  impacts  are  depicted  in  Table  212  and  subsequent  figures.  Many  of  the  relationships
expressed in this model are consistent with those described in the individual models above. Commercial
carrier status reduces the probability of categories A and B and increases the probability of category C,



as  seen  in  Table  186.  Additionally,  commercial  carrier  status  appears  to  reduce  the  probability  of
category D incursions. Although not seen in the Aircraft Model (as category D incursions were excluded),
this  is  likely explained by the tendency for commercial  pilots  to operate at  busier airports.  Takeoff
continues to be a dangerous time for aircraft and increases the likelihood of a category A incursion.
Takeoff also has a marginal increase in the likelihood of category D; however, the coefficient on takeoff
for category D is not precisely estimated, making this effect statistical noise rather than a true effect.

Figure 60 - Impact on Probability of Severity Categories of Controller Workload, Best Prediction Model

Controller workload, although not significant for all severity categories, has a fairly dramatic effect. As
controller workload increases, the probability of higher severity incursions also increases. This evidence
clearly supports the hypotheses that increased complexity, of which controller workload is but one part,
increases the likelihood of a severe event. A related hypothesis is that increased complexity also leads to
more  incursions  overall  (higher  frequency  instead  of  severity).  While  this  model  does  not  directly
answer that hypothesis, it does indicate that complexity increases severity. A model focusing on the
frequency of runway incursions may find that increased complexity leads to more incursions in addition
to higher severity incursions.



Figure 61 - Impact on Probability of Severity Categories of Daily Operations, Best Prediction Model

Increased daily operations have a similar impact to that seen in other models. This is encouraging and
lends additional  support to the idea that increased operations contribute to increased severity.  The
mechanism for this may be as simple as increasing the probability that two planes will be at the same
runway  at  the  same  time.  On  the  other  hand  increased  operations  may  put  additional  strain  on
controllers and result in more severe errors that way. The truth is likely a mix of both, but this result
indicates that busier airports are more likely to have more severe events than less busy airports.



Figure 62 - Impact on Probability of Severity Categories of Number of Hotspots, Best Prediction Model

The number of hotspots at an airport has an almost identical effect to that seen in the airport model.
This suggests that there is an effect here, rather than being an artifact of the data. The reduction in the
probability of category B incursions is still surprising. The mechanism for this is unclear. In some sense,
this is reducing severity, as the probability category A remains unchanged. A more focused look at the
hotspot  program  and  its  impact  on  incursion  severity  could  better  understand  the  effect  depicted
above.



Figure 63 - Impact on Probability of Severity Categories of Percent AC/AT Traffic, Best Prediction Model

Percent of total traffic that is air carrier has a fairly weak effect. This is similar to the impact seen in the
airport-specific  model.  The  overall  impact  appears  to  be  to  reduce  severity  slightly.  However,  the
variable  is  not  significant  at  the  5%  level  for  any  of  the  severity  categories.  That  the  impact  is
approximately the same is nonetheless encouraging. This likely represents the airport-wide impacts of
commercial carrier status. Commercial carrier status reduces the probability of severe categories for
individual flights; it is not a stretch to assume that predominately-commercial airports might experience
some larger reduction in severity.



Figure 64 - Impact on Probability of Severity Categories of Number of Intersections, Best Prediction Model

Number of intersections has a similar impact to that seen in the airport model – increased intersections
indicates a higher probability of a severe incursion. That many of the airport variables maintain their
effect and significance hints that airport characteristics may play a role in incursion severity.

Overall, the best prediction model maintains many of the relationships seen in the constituent models.
Commercial carrier status contributes to a higher probability of conflict events, but a lower probability
of severe events. Takeoff is associated with more severe events. Increased runway intersections are also
associated with higher probabilities of severe events. Hotspots present an interesting case and likely
require additional research to understand the nature of their impact.  Lastly, a final warning against
overfit is warranted. The goal of this model was to generate a model with the best fit for the data rather
than a true understanding of the causes of severity. It is promising that the conclusions of the separate
models hold through into this combined model. However, caution should be used when using this model
to make generalized statements.



5. CONCLUSIONS AND NEXT STEPS

5.1.What have we learned?

The research described in this report covered many different aspects of runway incursions. While some
of the results were inconclusive, many provide specific steps for further research. Some of the insights
were relevant to incident type distribution as well  as severity.  While not a central  objective of  this
research, these conclusions regarding incident type can provide valuable insights.  A summary of the
results is contained in Summary of Modeling Results.

One major  conclusion is  that  OE incidents  tend to be more severe  than other  incident types.  The
reasons for this are unclear at the moment. It is potentially a product of the nature of controller errors.
Alternatively, current training practices may already be effective in preventing category D OE incursions.
This disparity in incident severity has policy implications: policy directed at a particular incident type will
not impact severity uniformly.

Another strong conclusion is  related to the regional  distribution of incident type and severity.  Both
incident type and severity vary systematically between regions. Differences in pilot populations as well
as traffic levels may impact this. This also indicates that any policy action will have disparate effects
between regions, and that must be taken into account when crafting policy goals and responses.

Commercial carrier status also has a clear impact on severity. Commercial carriers tend to be involved
in less severe incidents. Despite this lower severity overall, commercial carriers are more likely to be
involved in conflict events, potentially due to operating at busier airports. However, once the conflict
versus non-conflict dynamic has been controlled for, commercial carriers are less likely to be involved in
severe  incidents.  This  relationship holds true even for OE incidents – suggesting that pilot  skill  and
experience may play a role even when they are not responsible for the error.

The phase of flight during which the incursion occurs appears to impact severity as well.  Incursions
during takeoff appear to be more likely to be severe than those when the aircraft at fault is taxiing or
landing, once other controlling variables are included.

The preliminary models described in this  report  also give  no indication that controller  age impacts
incident severity. It may be that there is no effect of age or it may be that the increased experience
associated with increased age counteracts any impacts. While still preliminary, it is encouraging that
there is no effect, and the results do not suggest a change to current policies surrounding controller age.

Controller workload – the number of aircraft a controller is responsible for – plays a significant role in
severity.  Increased workload is  associated  with higher  probabilities  of  severe events.  The positive
relationship between severity and workload conforms to current expectations. Nonetheless, it is helpful
to quantify that relationship – five additional aircraft increase the probability of a category A incursion
by approximately .03 – and to provide statistical evidence to support intuition.

Airport layout also appears to influence severity; this is intuitive, but with the analysis offers tangible
statistical  support.  Evidence  indicates  that  more  runway  intersections  are  associated  with  higher
probabilities for severe events.  There is  also evidence that more runways (for any fixed number of



intersections) help reduce the probability of severe events. These two results combined indicate that
more parallel (or at least non-intersecting) runways may be a way to reduce the likelihood of severe
events.

In  general,  it  does  not  appear  that  radar  systems play  a  role in  severity .  There  is  some marginal
evidence that STARS may help reduce severity, but it is tentative, at best. It is possible that radar still
helps reduce the rate of runway incursions; however, such frequency models could not be run with the
data provided for this study.

Increased  daily  operations  appear  to  increase  the  likelihood of  conflict  events,  but  do not  affect
severity. It is unclear from this study why this is the case, but a likely hypothesis is that there is an
increased  chance  for  an  interaction  between  two  aircraft  as  operations  increase,  increasing  the
likelihood of any given incursion being a conflict event. Again, this variable likely has some role in the
frequency of runway incursions, and further study is required to understand the total impact of this
variable.

Finally,  while  not  based  on  statistical  tests,  there  are  a  series  of  observations  about  the  general
distribution of variables and severity that are informative. These insights may not be as useful from a
policy perspective, but provide a richer context for understanding incursion severity:

 Pilot incursions are the most common type of incursion – occurring more than four times as
often as controller errors and approximately twice as often as V/PDs.

 Incursions during LAHSO are very rare.

 No severe incidents (category A or B) have occurred during a LAHSO.

 No pilot having more than 5,000 hours in a make and model has committed a severe incursion.

5.2.Further Research Ideas

In addition to the conclusions outlined in the paper and mentioned above,  several  questions arose
during  the  research  process.  These  questions  fall  into  two  major  categories.  The  first  category  is
additional research on how variables impact severity. The second category is extensions of this research
into other areas.

Throughout the paper, specific variables that would benefit from particular follow-up were identified.
These can serve as springboards for more focused research into how severity may be impacted, likely
with a combination of additional data, statistical analysis, and support from human factors and other
safety experts. A full list of these variables and topics can be found in Appendix D: Future Research.
Beyond those specific variables, there are three major classes of variables that require in-depth study.

First, and perhaps the largest group, are pilot variables. Some of the pilot variables were addressed
through cross tabulations. However, a modeling effort focused on pilot variables and PD incidents would
be beneficial. The results in this paper pertain mostly to OE incidents, which represent the smallest
absolute number of incidents. A better understanding of pilot incidents would help in minimizing the
impact  of  that  category.  A  similar  suggestion  holds  true  for  V/PD  incidents,  although  information



surrounding them is less available. This suggestion cross-cuts all the below suggestions as they too may
vary by type of incident.

Secondly, the weather variables warrant further examination. It is clear that there is some relationship
between severity and weather conditions, but it  is unclear what the specific causes are. Likely, that
relationship is  being driven by underlying behavioral  responses to weather rather than the weather
itself. This preliminary research identified a need to understand these variables and a more focused
examination might better explain their impact.

Thirdly,  the  controller  variables  require  a  more  thorough  examination.  The  controller  variables  in
particular were plagued by data problems and small sample sizes.100 It is surprising that  no controller
attributes contributed to the severity of controller incursions. A more focused examination – perhaps
using more accurate controller data – might reveal some trends.

Aside from specific variables to follow up on, another fruitful area for research would be frequency
modeling.  As  noted throughout  the research,  these insights  pertain  only  to  severity,  given that  an
incursion has already occurred. It is possible that many of these variables contribute to the underlying
rate of incursions, but not their severity. Additionally,  some variables may impact  both severity and
frequency.  Frequency  and  severity  are  two  sides  of  the  same  safety  issue.  To  gain  a  complete
understanding of the problem, frequency must also be modeled. This is the most beneficial next step,
even if that frequency research were focused only on OE incursions.

5.3.Clarification of the Rating of Runway Incursions

A final word on the ranking system is warranted. In addition to information about factors influencing 
severity, the deep scrutiny of the ranking system provided insights how incursion severity is ranked.

Throughout the results, there were often disparate impacts between conflict and non-conflict events. 
Factors such as commercial carrier status showed no impact for all severity categories, but when 
excluding category D events, a relationship with severity emerged. Moreover, only one of the ordered 
models satisfied the assumptions underlying the ordered logit model – and that model excluded 
category D events.101 Additionally, the multinomial models reveal that some variables explain category D
incursions but none of the conflict categories.

All this evidence combines to suggest that category D incursions are a distinct group from the remaining 
three categories. Furthermore, there is evidence that category D incursions do not follow a smooth 
ordering with the other three categories. This has implications for any modeling effort that chooses to 
focus on all severity categories. Any model will need to account for a “two-stage” process, distinguishing
between conflict and non-conflict and then attempting to identify severity.

100 See Appendix B: Data Issues for a full list of problems identified in the data.

101 Strictly speaking,  the ordered model  assumes that  the impact  is  the same across categories (rather than
testing that the particular order of categories is important).



This also has implications for understanding the danger posed by any given event. If category D events 
are not part of a smooth ranking, the current system may not be properly capturing the risk inherent in 
some category D events. A simplistic example is when an aircraft lands on a runway without clearance or
communication with the tower. If another aircraft is present on the runway, the incursion would likely 
be an A or B; however, if the airport is otherwise empty the same pilot error would be rated a D. This 
bears serious consideration as, in this example, the behavior in question is inherently quite risky and 
likely would be a serious event in the presence of other aircraft, someone the pilot could not possibly 
control.

While not informed by rigorous research, the results of this effort would imply that incursion severity is 
truly (at least) a two-stage process. The first stages relates to the riskiness of a behavior (landing on a 
closed runway or forgetting an aircraft on the airfield versus stopping one foot past a hold-short line or 
giving a clearance to cross a runway to a non-existent flight number). The second stage relates to the 
likelihood that another aircraft will be nearby when the incident occurs. That is, the axes would be the 
riskiness of the behavior and the possibility of a conflict.

Changes to the ranking system would require significant involvement by many players at the FAA and 
ICAO, but such coordination may offer a considerable benefit in an effort to respond to safety risks. 
Those interested in using data on incursions to reduce the likelihood of future collisions need to take a 
serious look at how to best classify incursions along however many axes of risk are most appropriate to 
model.



APPENDIX A: RUNWAY INCURSION DEFINITION

This  is  an  excerpt  from  the  Manual  on  the  Prevention  of  Runway  Incursions,  First  Edition. 102 It  is
reproduced unedited from that document.

102 International Civil Aviation Organization (2007).



Chapter 6

CLASSIFICATION OF THE SEVERITY OF RUNWAY
INCURSIONS

6.1 SEVERITY CLASSIFICATION

6.1.1 The objective of runway incursion severity classification is to produce and record an assessment of
each runway incursion. This is a critical component of risk measurement, where risk is a function of the
severity  of  the outcome and  the  probability  of  recurrence.  Whatever  the  severity  of  the occurrence,
however,  all  runway  incursions  should  be  adequately  investigated  to  determine  the  causal  and
contributory factors and to ensure risk mitigation measures are implemented to prevent any recurrence.

6.1.2  Severity  classification  of  runway incursions  should  be assessed as soon  as possible  after  the
incident  notification with  due regard  for  the information required  in  6.2.  A reassessment  of  the final
outcome may be applied at the end of the investigation process.

6.1.3 For the purpose of global harmonization and effective data sharing, when classifying the severity of
runway incursions, the severity classification scheme in Table 6-1 should be applied. See Figure 6-1 for
examples of severity classification.

Table 6-1. Severity classification scheme

Severity
classification

Description*

A A serious incident in which a collision is narrowly avoided. 

B An incident in which separation decreases and there is significant potential
for collision, which may result in a time-critical corrective/evasive response
to avoid a collision. 

C An incident characterized by ample time and/or distance to avoid a 
collision. 

D An incident that meets the definition of runway incursion such as the 
incorrect presence of a single vehicle, person or aircraft on the protected 
area of a surface designated for the landing and take-off of aircraft but with
no immediate safety consequences. 

E Insufficient information or inconclusive or conflicting evidence precludes a 
severity assessment. 

* Refer to Annex 13 for the definition of “incident”



6.2 FACTORS THAT INFLUENCE SEVERITY

To properly classify the severity of a runway incursion the following information is required:

a) Proximity of the aircraft and/or vehicle. This distance is usually approximated by the controller or
from the aerodrome diagram. When an aircraft  flies directly over another aircraft  or vehicle, then the
closest vertical proximity should be used. When both aircraft are on the ground, the proximity that is used
to classify the severity  of  the runway incursion is  the closest  horizontal  proximity.  When aircraft  are
separated in both horizontal  and vertical  planes,  the proximity  that  best  represents the probability of
collision should be used. In incidents in which the aircraft are on intersecting runways, the distance from
each aircraft to the intersection is used.

b) Geometry  of  the encounter.  Certain  encounters  are inherently  more severe  than others.  For
example,  encounters with  two aircraft  on the same runway are more severe than incidents with  one
aircraft on the runway and one aircraft approaching the runway. Similarly, head-on encounters are more
severe than aircraft moving in the same direction.

c) Evasive or corrective action. When the pilot of an aircraft takes evasive action to avoid a collision,
the magnitude of the manoeuvre is an important consideration in classifying the severity. This includes,
but is not limited to, hard braking action, swerving, rejected take-off, early rotation on take-off, and go-
around. The more severe the manoeuvre, the higher its contribution to the severity rating. For example,
encounters involving a rejected take-off in which the distance rolled is 300 metres are more severe than
those in which the distance rolled is less than 30 metres.

d) Available reaction time. Encounters that allow the pilot little time to react to avoid a collision are
more severe than encounters in which the pilot has ample time to respond. For example, in incidents
involving a go-around, the approach speed of the aircraft and the distance to the runway at which the go-
around was initiated needs to be considered in the severity classification. This means that an incident
involving a heavy aircraft aborting the landing and initiating a go-around at the runway threshold is more
severe than one that involves a light aircraft initiating a go-around on a one-mile final.

e) Environmental conditions, weather, visibility and surface conditions. Conditions that degrade the
quality of the visual information available to the pilot and controller, such as poor visibility, increase the
variability of the pilot and controller response and, as such, may increase the severity of the incursion.
Similarly, conditions that degrade the stopping performance of the aircraft or vehicle, such as wet or icy
runways, should also be considered.

f) Factors  that  affect  system  performance.  Factors  that  affect  system  performance,  such  as
communication failures (e.g. “open mike”) and communication errors (e.g. the controller’s failure to correct
an error in the pilot’s readback), also contribute to the severity of the incident.

6.3 RUNWAY INCURSION SEVERITY CLASSIFICATION CALCULATOR

A runway incursion severity classification (RISC) calculator is available on CD (see Appendix H for a
description). The calculator was developed to assist States in assessing the severity of runway incursion
events. Use of the RISC calculator should also enable a consistent assessment to be made. Alternatively,
the severity of runway incursions can be classified manually using the guidance contained in 6.1 and 6.2.





APPENDIX B: DATA ISSUES

This appendix contains the output from the “Issue Tracker” maintained as part of the data cleaning
process.

ID Variable Name Issue Comments
1 all Missing Airport: CGI

2 all Missing Airport: ESN

3 all Missing Airport: FTG

4 all Missing Airport: GKY

5 all Missing Airport: GLS

6 all Missing Airport: GTR

7 all Missing Airport: GYH

8 all Missing Airport: HXD
only incident

has no time
associated

observation will be dropped

9 all Missing Airport: JST

10 all Missing Airport: MER

11 all Missing Airport: MYV

12 all Missing Airport: OMN note, airport
closed

13 all Missing Airport: SPG

14 all Missing Airport: UCA

15 all Missing Airport: VBG

16 all Missing Airport: VCV

17 ALL definitions of the variables

Many of the
variables,

while having a
plain-text

definition, do
not indicate

how they
were gathered
(e.g., What is a

"short taxi"),
over how long
(e.g., average

rainy days)

Request clarification from FAA;

18 geo_bullseye_flag definitions of the variables
intersecting in the same area

19 geo_mult_rwy_crossing_flag definitions of the variables Does pilot have to cross multiple



ID Variable Name Issue Comments
rwys to get to a departure rwy

20 geo_num_hotspot definitions of the variables
This information is in the airport

diagram charts (Marked as "HS

21 geo_num_rsa_isect definitions of the variables

Use the standard definition for

determine whether there is
intersection (1000ft at approach

22 geo_num_taxi_x_runway definitions of the variables
In this case, count the number of

taxiways that cross more than 2

23 geo_rwy_close_flag definitions of the variables

Again, there is no "definitive"
criteria in the CAST report. This

applies to cases where the rwys
are NOT parallel, but there is still

a possibility for confusion (e.g.,
I'm assigned to land on rwy 35,
but I land on rwy 4, b/c the rwy

ends are very close. (E.g., see
HUT hotspot #2). Suggested

criteria: (a) rwy intersection angle
less than 50 degrees, and (b)

both rwy ends within 500 ft of

24 geo_rwy_crossing_flag definitions of the variables

Does pilot have to cross a rwy to
get to a departure rwy? Basically

the answer is "No" if you have
only 1 runway (or, if you have
more than 1 rwy but NO twy

25 geo_rwy_num_isect definitions of the variables

26 geo_rwy_num_t_isect definitions of the variables

27 geo_rwy_parallel_flag definitions of the variables

are there parallel runways (these

airport diagram by looking at the
rwy numbers, eg., 26R / 26L)

28 geo_taxi_short_flag definitions of the variables

Could not get any information.
Suggest taking a sample of all
airports for which this item is

flagged, then of the sample, use
the greatest observed value as

29 lahso_flag_ap definitions of the variables



ID Variable Name Issue Comments
30 locid definitions of the variables

31 runway information KWA
need to

manually pull

32 runway information PFN need to
manually pull

33 runway information OMN

need to
manually pull
(NOTE: 5010

contains
information

for an airport
that has taken
over the code)

34 traffic variables One airport sums to 111%

operations
percenages at

Kalaeloa
Airport (JRF)
sum to 111%

35 weather variables combined weather stations

Many airports
in a region

seem to share
weather data,

even if they
are not

correct (e.g.,
Hyannis, MA

and Lawrance,
MA)

36 15 airports not included in dataset that are
in RI

37 acft_evas_actn_code 27 missing values
Replaced

missing with
unknown

38 acft_gnd_spd_kt_qty 1133 missing values

codebook (but
not in data)

contains
ACFT_GND_SP
D_UNKN_FLA

G, is this "Y"
for these

1133?

will treat missing as unkown

39 acft_model_desc odd naming conventions used in
forming
aircraft

groups. No
longer needed



ID Variable Name Issue Comments
in database.

Keeping issue
open to

grouping is
completed

40 acft_obstn_code Missing values and "0" coded values

What does
missing mean?

Also, the
codebook has
no definition
of "0" but it
appears 174
times. Note:

of the zeroes,
18 have

descriptions of
obstructions

themselves have little useful

"demographic" variable and

41 acft_phase_code 17 missing values

12 missing do
not have

descriptions.
The variable in
general agrees

with
phaseofflight.
Letting the 12

missing stay
missing.

42 acft_tcas_equip_code 21 missing values

43

44 ctlr_actn_contem_code Incorrect coding

one value
coded as "X",
presumed to

be a "Y"

45 ctlr_actn_contem_code missing 440 missing

46 ctlr_actn_taken_code missing

10 missing,
same as

ctlr_alert_cod
e

47 ctlr_alert_code missing

6 missing do
not have

description.
Demographic
only variable,

letting the 6
be missing



ID Variable Name Issue Comments

48 ctlr_alert_otr_desc missing

1336 missing,
equal to those

in
ctlr_alert_cod
e that are not

"other"

49 ctlr_area_spl_code unclear meanings/codings

It's unclear
what this

variable is
capturing in

the first place,
as sometimes

this appears to
list facilities

(tower),
locations

(southwest),
positions

(LC1), areas
(Area 7), or
just a single
number (6).

There are 144
unique values

in this field
(though some
are clearly the

same with
different

abbreviations)

Data too inconsistent to use.

50 ctlr_asst_req_flag Y,N,Missing
27 Y, 12

missing, 1465
N

51 ctlr_aware_dvlp_flag Y,N,Missing
258 Y, 10

Missing, 1236
N

52 ctlr_birth_date Missing 479 Missing

199 missing in relevant data set,
may have to exclude from some
samples; recode one impossible
value is missing, others over 61

are likely "grandfathered" in

53 ctlr_certif_date Missing 457 missing, a
few wrong

entires (7
years before

birth, 2 years
after birth).

No entires

185 missing in relevant data set,
significant followup needed



ID Variable Name Issue Comments
prior to 1980,

many certified
40+ years

after birth

54 ctlr_certif_type_ncode_oe unclear meanings/codings
initial vs

recerficiation?

"Controllers are initially certified.
In pre-ATSAP days, certification

operational error (on one or all
positions). Then recertification

was required. Today, many
events that might have required

decertification are not (and

process). " May have to take

55 ctlr_contrib_code result of one-to-many merge

appears to
have been a

one-to-many
merge from

OE events to
contributing

factor codes,
as a result,

events appear
in the db

multiple times
(i.e., once for

each
contributing

code). We are
not using the

code in our
model, so

have dropped
the field and

removed
duplicate lines

56 ctlr_contrib_prev_30mo_qty Missing

This is
mutually

exclusive with
ctlr_prim_pre
v_30_mo_qty

_oe. Treat
missing as

missing

57 ctlr_curr_shft_end_time Missing 456 missing
184 mising in relevant set, may

have to exclude from some



ID Variable Name Issue Comments

58 ctlr_curr_shft_start_time Missing

456 missing,
same records

missing as end
time

184 mising in relevant set, may
have to exclude from some

59 ctlr_dstrctn_flag Y,N,Missing
200 Y, 15

Missing, 1289
N

60 ctlr_fctr_med_certif_flag Y,N,Missing

3 Y, 351
missing, 1150
N. may not be
useful with so

few Y

61 ctlr_fpl_date Missing

627 missing.
The 4digit

dates
presented

make no
sense.

62 ctlr_perl_code Missing 449 missing 181 missing in relevant data set,

63 ctlr_prev_shft_end_time Missing

598 missing.
454 missing
current end

time. 2
missing

current but
have previous.

144 miss
previous but
have current

297 missing in relevant data set,
will have to exclude those (plus

64 ctlr_prev_shft_start_time Missing

598 missing,
same missing

as prev end
time. 454

missing
current start

time. 2
missing

current but
have previous.

144 miss
previous but
have current

297 missing in relevant data set,
will have to exclude those (plus

65 ctlr_prim_prev_30mo_qty missing 528 missing
259 missing in relevant data set,
need to understand relationship

to contrib 30 month variable



ID Variable Name Issue Comments

66 ctlr_psn_comb_desc Missing

27 Missing.
May require

additional
parsing to

collapse in a
usable

categorical
variable.

Currently 642
unqiue values

will use the RI database instead,

67 ctlr_psn_fnctn_otr_desc Missing

1464 Missing.
Will need to

parse better.
27 unique

values

looks like people mistook this

positions" description. Will drop

68 ctlr_psn_min_qty Missing

440 Missing.
Some large
values (555

minutes)

177 missing in relevant data set,
will have to excluse from some

69 ctlr_psn_otr_desc Missing 80 missing

70 ctlr_sctr_psn_code_oe Missing. Additional Parsing

12 missing.
Needs to be

parsed further
to be

collapsed into
small set'

71 ctlr_trng_reltd_1yr_flag Y,N,Missing 859 Y, 448
Missing, 197 N

180 missing relevant set, treat

72 ctlr_trng_reltd_desc Missing. Additional Parsing

654 Missing.
Lots of

different
answers. May
need to parse

to collapse
into aseries of

flags

unlikely to bear fruit if parsed,
most traning specifics will be

73 ctlr_wrkld_acft_qty Believability

Range from 0
to 35. are

these
reasonable?

90th% is 8

74 ctlr_wrksked_desc Missing. Additional Parsing 456 missing
additional

parsing
required to

turn into
usable

This is basically unusable, which



ID Variable Name Issue Comments
variable

75 event_alt_ft_qty_oe 795 missing values

Some rounded
to nearest 500

feet
particularly at

values 5000
and under.
Since these

should all be
ocurring at

ground level,
what does it

mean to have
altitude of

>0 ?

basically all zero/mssing for
relevant data set, drop variable

76 event_asp_code_oe 92 missing values In relevant data set, nearly all are
surface or missing, drop variable

77 event_asp_otr_desc_oe 1488 coded "missing" values

Missing
values, but all

accounted for.
Missing for

event_asp_co
de_oe equal

to "Other".

78 event_cat flags Missing, non mutually exclusive replaced
missing to no

need to double check, but in
relevant data set, it looks like all

have at least one yes and if there
is a no, there are not missings

79 event_cat_atcs_flag_oe 79 missing values
replaced

missings with
no

check by year, need to double
check, but it appears no records

contain missings and no across
the 5 categories, so can likely

replace missing with no and be

80 event_cat_human_flag variable name
replaced

missings to no

check by year, need to double
check, but it appears no records

contain missings and no across
the 5 categories, so can likely

replace missing with no and be

81 event_class_code missing
71 missing

values D/E/missing in data set, dropping

82 event_class_code No codebook for values the codebook
does not have

any
explanation of
event classes,

D/E/missing in data set, dropping



ID Variable Name Issue Comments
are these
incursion

ratings?

83 EVENT_RI_FLAG Reliability

How reliably
does this field

indicate Ris?
994/1086 of

the "Y"s
match to Ris.
418/1504 are

missing

(FROM FAA: I think this field is a
preliminary determination in the

field--RI database is the FINAL
source. We can ignore this field.)

84 fac_atc_ctl_code_oe 2 missing values

It is unclear what this variable
means or contains. Only 10

"Radar" rather than "TOWER".

85 fac_class_code missing, codebook misreported

108 missing
values. 52

missing on
relevant set.

the codebook
appears to

have values
for

fac_type_code
rather than

fac_class_cod
e, as a result,

it is unclear
wht the codes

(1-14, plus
ATC-7) mean.
Appears to be
for pay levels

(based on
traffic/comple

xity)

Need additional information on

FAA Facility classification code. I
believe this coding has changed

over time. Its basically a rating of
the complexity/busy-ness of the

compensation purposes (more
busy, more pay). The levels are 4

86 fac_cnflct_alert_code_oe 43 missing values 22 missing on
relevant set

22 missing in relevent set, will
have to drop records for some

87 fac_equip_layout_flag_oe 4 missing values 1 missing on
relevant set drop observation if needed

88 fac_equip_unsatfy_flag_oe 5 missing values 1 missing on
relevant set.

This
observation
also missing

on
fac_equip_lay

drop observation if needed



ID Variable Name Issue Comments
out_flag

89 fac_id_code missing

2 missing on
relevant set.

Should not use
over RI data.

90 fac_primary_code No codebook for values

the coebook
does not have

any
explanation of

this code, all
1504

obesrvatrions
(no missing)

are "P"

91 FAC_RADAR_ACDS_FLAG Variable in codebook but not dataset need variable; perhaps TRACON

92 FAC_RADAR_AMASS_FLAG Variable in codebook but not dataset need variable; FAA to provide

93 FAC_RADAR_ARTS_FLAG Variable in codebook but not dataset need variable; perhaps TRACON

94 fac_radar_artsii_flag_oe Value of "Y" and missing

Assume that
missings are

"N"s, but it is
possible that

some records
may be

missing for
other reasons.

95 fac_radar_artsiia_flag_oe 1,202 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

96 fac_radar_artsiiia_flag_oe 1,156 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

97 fac_radar_artsiiie_flag_oe 867 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

98 fac_radar_asdeii_flag_oe 1192 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

99 fac_radar_asdeiii_flag_oe 1007 missing. Value of "Y", "N", and missing Unclear on
difference



ID Variable Name Issue Comments
between N

and missing

100 FAC_RADAR_ASDEX_FLAG Variable in codebook but not dataset

101 FAC_RADAR_ASR11_FLAG Variable in codebook but not dataset

102 fac_radar_asr9_flag_oe 639 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

recode mising as "NO", check

103 fac_radar_brd_band_flag_oe Variable in dataset but not codebook, 1194
missing, others are Y, N

104 fac_radar_britiv_flag_oe 1189 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

verify that having neither is due

105 fac_radar_cenrap_flag_oe 1,202 missing. Value of "Y", "N", and
missing. 1 Y.

Unclear on
difference

between N
and missing

106 fac_radar_darc_flag_oe Variable in dataset but not codebook. 1,119
missing. Value of "Y", "N", and missing.

Unclear on
difference

between N
and missing

never yes in the relevant data

107 fac_radar_dbrite_flag_oe 898 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

verify that having neither is due

108 fac_radar_earts_flag_oe 1,188 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

109
FAC_RADAR_EBUS_HOST_FLA

G Variable in codebook but not dataset

110 FAC_RADAR_HOST_FLAG Variable in codebook but not dataset

111 FAC_RADAR_MODEL1_FLAG Variable in codebook but not dataset

112 fac_radar_modes_flag_oe 964 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

what does it mean to have a NO
(missing) for Mode-S?; seems

113 fac_radar_nrw_band_flag_oe Variable in dataset but not codebook. 1,200
missing. Value of "Y", "N", and missing.

114 FAC_RADAR_OASIS_FLAG Variable in codebook but not dataset



ID Variable Name Issue Comments

115 fac_radar_otr_desc_oe 1,155 missing values. Inconsistent entiries. 

Missing
values, but the

349 yes for
fac_radar_otr

_flag_oe is
equivilent to

the number of
desc entries

will have ot parse for radar

116 fac_radar_otr_flag_oe 956 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

117 FAC_RADAR_STARS_FLAG Variable in codebook but not dataset

118 fac_radar_trsn_desc_oe 1503 missing.

Missing
values, but
consistent

with 1 "Y" in
fac_radar_trsn

_flag_oe

119 fac_radar_trsn_flag_oe 18 missing values. 1 Y

120 FAC_RADAR_URET_FLAG Variable in codebook but not dataset

121 fac_rgn_code No codebook for values
Found an

alternate site
with codings

122 fac_rgn_code missing values

variable
agrees with

reg_n and
duplicates

values. Use
reg_n for

region
information

123 fac_type_code missing 1202 missing
values

all Ris are "other" or "missing".

124 fctr_cmplx_asp_flag_oe 1,160 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

125 fctr_cmplx_emerg_flag_oe 1,184 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

126 fctr_cmplx_expr_flag_oe 1,011 missing. Value of "Y", "N", and missing Unclear on
difference

between N



ID Variable Name Issue Comments
and missing

127 fctr_cmplx_flow_ctl_flag_oe 1,166 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

128 fctr_cmplx_na_flag_oe
Variable in dataset but not codebook. 1,202

missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

129 fctr_cmplx_nbr_acft_flag_oe 632 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

130 fctr_cmplx_otr_desc_oe 1,097 missing. All values unique
descriptions.

Missing
values, but

more than for
614 coded as

"other" in
fctr_cmplx_otr
_flag_oe equal

to "Other".

131 fctr_cmplx_otr_flag_oe 867 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

132 fctr_cmplx_rwy_cond_flag_oe 1,164 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

133
fctr_cmplx_rwy_config_flag_o

e 875 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

134 fctr_cmplx_spl_event_flag_oe 1,181 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

135 fctr_cmplx_trrn_flag_oe 1,196 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing

136 fctr_cmplx_wx_flag_oe 1,089 missing. Value of "Y", "N", and missing

Unclear on
difference

between N
and missing



ID Variable Name Issue Comments

137 fctr_com_err_flag_oe missing

116 Y, 569 N,
363 missing
on relevant

set

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

138 fctr_com_otr_desc inconsistent with flag

Some non-
missing values

are Y, some
are N on

fctr_com_err_
flag. 63 non-

missing values

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

139 fctr_comptr_entry_flag Missing

31 Y, 756
Missing, 261 N

on relevant
set

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

140 fctr_comptr_otr_desc inconsistent with flag

1039 missing,
9 non-missing.

All non-
missing are
missing on

fctr_comptr_e
ntry_flag

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

141 fctr_coord_flag_oe Missing

88 Y, 707 N,
253 Missing
on relevant

set

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

142 fctr_coord_gnd_lcl_flag_oe Missing 73 Y, 245 N,
730 Missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

143 fctr_coord_gnd_lcl_otr_desc inconsistent with flag

45 non-
missing

values. 35 are
missing on

flag, 10 are Y

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

144 fctr_data_post_flag missing 39 Y,
85Missing,

924 N on

Factor (non complex) flags are
missing relevent other data, are



ID Variable Name Issue Comments

relevant set
aggregated, and are poorly laid

out on the form. Data will be

145 fctr_flight_strip_flag Missing
38 Y, 762

missing, 248 N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

146 fctr_flight_strip_otr_desc inconsistent with flag

16 non-
missing

values. 13
missing on

flag, rest are Y

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

147 fctr_gnd_opn_flag Missing 144 Y, 673
Missing, 231 N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

148 fctr_inapp_disp_flag missing 40 Y, 762
Missing, 246 N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

149 fctr_inapp_disp_otr_desc inconsistent with flag
9 non-missing
values. 2 Y, 7

missing on flag

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

150 fctr_incdnt_area_flag missing
48 Y, 729

Missing, 271 N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

151 fctr_info_exchg_flag_oe missing
48 Y, 684

missing, 316 N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be



ID Variable Name Issue Comments

152 fctr_info_exchg_otr_desc missing

39 non-
missing. 25

missing flag, 1
N, 13 Y

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

153 fctr_misid_flag missing 31 Y, 279 N,
738 Missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

154 fctr_misid_otr_desc inconsistent with flag
9 non-missing.

1 Y on flag, 8
missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

155 fctr_psn_relf_brfg_flag_oe missing 40 Y, 905 N,
103 Missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

156 fctr_psn_relf_otr_desc inconsistent with flag

13 non-
missing. 2 Y on

flag, rset
missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

157 fctr_radar_disp_flag missing 42 Y, 123
Missing, 883 N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

158 fctr_rdbk_flag Missing 98 Y, 713
Missing, 237 N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

159 fctr_rdbk_otr_desc inconsistent with flag 110 non-
missing

values. 2 N on
flag, 23 Y, rest

missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be



ID Variable Name Issue Comments

160 fctr_trng_flag missing

95 Y, 3
missing, 950

N. Likely
useable

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

161 fctr_visl_data_flag missing 111 Y, 231 N,
706 Missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

162 fctr_visl_data_otr_desc inconsistent with flag

171 non-
missing

values. 23 Y
on flag, 17 N
on flag, rest

missing

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

163 fctr_wx_flag_oe missing
41 Y, 4

Missing, 1003
N

Factor (non complex) flags are
missing relevent other data, are

aggregated, and are poorly laid
out on the form. Data will be

164 loc_drctn_deg_qty Missing

4 unique
vlaues. 27 0s,

1 6, 1 140, 2
180s. Cluster

on 0 makes
little sense.

1017 missing

165 loc_dstc_nm_qty Missing

769 missing,
275 0s. 2 1s. 2
2s. Seems like

that makes
sense for

ground
incidents

166 loc_fix_code missing

14 non
missing

vlaues. Mostly
unique (2

instances of
KFXE)



ID Variable Name Issue Comments

167 loc_intxn_id_code Inconsistent entires

Field needs to
be parsed to

be useable.
Lots of unique

entires. Not
filled out in
conjuntion

with rwy and
twy code.

These three variables are actually
quite interesting, but likely too
much effort to parse/do much
with given the constraints and

competing options. Variable

168 loc_rwy_code Inconsistent entires

Field needs to
be parsed to

be useable.
Lots of unique

entires. See
loc_intxn_id_c

ode

These three variables are actually
quite interesting, but likely too
much effort to parse/do much
with given the constraints and

competing options. Variable

169 loc_twy_code Inconsistent entires

Field needs to
be parsed to

be useable.
Lots of unique

entires. See
loc_intxn_id_c

ode

These three variables are actually
quite interesting, but likely too
much effort to parse/do much
with given the constraints and

competing options. Variable

170 opn_proc_defic_flag missing

3 missing, 984
N, 61 Y. Desc

field only filled
out for Y

values

variable uninteresting, dropped

171 opn_proc_spl_desc inconsistent with flag

103 non-
missing

values. 1 on N,
rest on Y. 5

missing values
have Y for flag

172 opn_proc_spl_flag Missing 107 Y, 3
Missing, 938 N

173 opn_psn_comb_code missing

1 missing
value. Unclear

on "N".
Interpreted to

mean
combined, not

approved

174 opn_sctr_comb_code missing. Unclear coding Coding
unclear. No A

listed in ATQA
dictionary.

will use the RI database instead,



ID Variable Name Issue Comments
174 missing

175 opn_sctr_comb_code_oe 174 missing values
will use the RI database instead,

176 opn_sctr_comb_code_oe and
ctlr_psn_comb_desc_oe inconsistent information

These two
variables do

not always
agree

will use the RI database instead,

177 oprtr_flt_id_nbr_oe Lots of unique entires
Will require

parsing. 2
missing values

drop two missing observations
when necessary. Will parse to

178 oprtr_flt_id_nbr_oe 3 missing values and inconsistent formatting
of string variable

Airport
callsign- Most
begin with 3-

character
airline code,

but not all
follow that

practice (e.g.,
"AIRPORT",

"BICEP", "AP
525")

drop two missing observations
when necessary. Will parse to

179 plt_rprt_nmac_code_oe missing 16 missing.
164 unknown variable irrelevent, dropped

180 sepn_hrzntl_ft_qty missing

289 missing
values.

Extends up to
13050 which

seems high to
be in a RI

sufficent for these purposes

181 sepn_hrzntl_min_qty missing all missing
(1048)

182 sepn_ver_ft_qty missing 588 missing.
sufficent for these purposes

183 final/prelim status Are the fields
taken from

the ATQA
database final

or
preliminary? Is
it possible that

some of the
OEs reported
are classified

as OE
preliminarily

FROM FAA: Yes its possible. The
final determination should be

based on the classification in the



ID Variable Name Issue Comments
then later

reclassified as
PD? How

would you tell
which those

were?

184
Need to figure out how to get all 3000 days

of operations data

185 acft_alt_ft_qty Missing Dropped
variable

186 acft_alt_unk_flag Missing, Yes, No values 6179 missing

187 acft_ctl_arpt_no_twr_flag Missing, Yes, No values 6252 missing Treat missing as N.; drop variable

188 acft_ctl_class_a_flag Missing, No values Dropped
variable

189 acft_ctl_class_b_flag Missing, Yes, No values Dropped
variable

190 acft_ctl_class_c_flag Missing, Yes, No values dropped
variable

191

192 acft_ctl_class_d_flag Missing, Yes, No values Dropped
variable

193 acft_ctl_class_e_flag Missing, Yes, No values Dropped
variable

194 acft_ctl_class_g_flag Missing, Yes, No values Dropped
variable

195 acft_ctl_otr_desc Missing Values

6418 missing.
All filled in

values
correspond to

a value of Y
for the

acft_ctl_otr_fl
ag

196 acft_ctl_otr_flag Missing, Yes, No values 6245 missing.

197 acft_ctl_trsa_flag Missing, Yes, No values 6222 misisng

198 acft_ctl_twr_flag Missing, Yes, No values 5325 missing

199 acft_ctl_unk_flag Missing, Yes, No values 6258 missing.

200 ACFT_FIRST_FLT_CODE In ATQA, not in dataset Tracks "first
flight of day

for pilot". Not
in current



ID Variable Name Issue Comments
dataset

201 acft_mkmd_make_desc Inconsistant Entries

Used in
forming
aircraft

groupings.
Keeping issue

open til
groups are
completed

202 acft_mkmd_model_desc Inconsistant Entries

Used in
forming
aircraft

groupings.
Keeping issue

open til
groups are
completed

203 acft_phase_apch_flag Y,N, Missing dropped
variable

204 acft_phase_cmb_flag Y,N, Missing dropped
variable

205 acft_phase_crz_flag Y,N, Missing dropped
variable

206 acft_phase_dscnt_flag Y,N, Missing Dropped
Variable

207 acft_phase_lndg_flag Y,N, Missing Dropped
Variable

208 acft_phase_otr_desc Missing values

193 non-
missing

values. Appear
to correspond

to Y on the
flag variable.

However,
numbers

differ
indicating

some Y have
no description

209 acft_phase_otr_flag Y,N, Missing
194 Y, 4174

missing, 2066
N

210 acft_phase_unkn_flag Y,N, Missing Dropped
variable. use

phase of flight



ID Variable Name Issue Comments
instead

211 acft_rule_flt_code UNK and missing

Recoded DVFR
and SVFR into

VFR and
converted
variable to

numeric

212 acft_sua_desc Missing Values

6432 missing.
All non-

missing values
correspond to

a Y value for
acft_ctl_sua_fl

ag

213 acft_sua_flag Missing, Yes, No values 6259 missing

214 acft_tcas_code_ UNK and missing 271 TCUNKN,
6088 missing

215 acft_tcas_invlvd_desc_ no entries All missing

216 acft_transpndr_code UNK and missing 177 UNK,
6085 missing

217 acft_type_code missing

751 missing.
Unclear how

to treat
missings

218 acft_type_otr_desc Missing

Non missing
entires appear
to correspond
to OTR in the

type code

219 clnc_hrzntl_ft_qty Missing

Only 5 non-
missing

entries. Likely
not relevant

varaible

220 clnc_hrzntl_unkn_flag Y,N,Missing

26 Y, 6304
Missing, 104

N. Not
relevant, but

seems
inconsistant

with missings
in

clnc_hrzntl_ft
_qty



ID Variable Name Issue Comments

221 clnc_no_flag Y,N,Missing

192 Y, 6218
Missing, 24 N.

Likely not
relevant

222 clnc_slant_ft_qty Missing. Not in ATQA data dictionary

1 non-missing
value. No

description in
data

dictionary

223 clnc_ver_ft_qty Missing
9 non-missing
values. Likely
not relevant

224 clnc_ver_unkn_flag_pd Y,N,Missing 32 Y, 6301
Missing, 101 N

225 dev_air_airspd_flag_pd Many Missings

what do
missing values

indicate
different from

"Y" or "N"

226 dev_air_asp_flag Many Missings

what do
missing values

indicate
different from

"Y" or "N"

227 dev_air_atc_alt_clnc_flag_pd Many Missings

what do
missing values

indicate
different from

"Y" or "N"

228 dev_air_atc_crs_clnc_flag_pd Many Missings

what do
missing values

indicate
different from

"Y" or "N"

229 dev_air_carlss_flag Many Missings

what do
missing values

indicate
different from

"Y" or "N"

230 dev_air_far_otr_flag Many Missings

what do
missing values

indicate
different from

"Y" or "N".
6291 missing



ID Variable Name Issue Comments

231 dev_air_miss_rprt_flag_pd Many Missings

what do
missing values

indicate
different from

"Y" or "N".
6299 missing

232 dev_air_plt_unqlfy_flag_pd Many Missings

what do
missing values

indicate
different from

"Y" or "N".
6298 missing

233 dev_air_too_low_flag_pd Many Missings

what do
missing values

indicate
different from

"Y" or "N".
6301 missing

234 dev_air_vfr_ifr_rqrd_flag_pd Many Missings

what do
missing values

indicate
different from

"Y" or "N".
6297 missing

235 dev_asp_viol_arsa_name only one value, rest missing

Not in ATQA
data

dictionary
either

236 dev_asp_viol_code Many Missings

6,091
missings. 50

values of
"NONE", 35

"UNK"

237 dev_asp_viol_sua_desc inconsistent

4 entires are
non-missing.

Only 2 of
dev_asp_viol_
code have an
entry of SUA

238 dev_asp_viol_tca_name all missing All entries are
missing

239 dev_sfc_carlss_flag Many Missings
4,306 missing.
2,052 N, 76 Y

240 dev_sfc_enter_flag Many Missings 1,543 missing;
Y and N values



ID Variable Name Issue Comments

241 dev_sfc_fltpln_flag Many Missings

4,340 missing;
Y and N

values. Only N
and missing
on relevant

set

242 dev_sfc_lndg_clnc_flag Many Missings
4,031 missing;
Y and N values

243 dev_sfc_lndg_flag Many Missings

3,967 missing,
does not seem

to match up
with Clearance

flag.
Presumably

you can't land
on the wrong

runway but
have

clearance for
landing on

that runway

244 dev_sfc_otr_desc Many Missings

Parsed
variable for

other
common

answers and
created flags
for : crossed

hold short line
and landed on
closed runway

245 dev_sfc_otr_flag Many Missings

4018 missings.
See

dev_sfc_otr_d
esc

246 dev_sfc_tkof_clnc_flag Many missings
3,851 missing;
Y and N values

247 dev_sfc_tkof_rwy_twy_flag Many missings 4,209 missing;
Y and N values

248 dev_sfc_wx_minm_flag Many missings 4,332; Y and N
values

249 dev_type_air_flag Many missings Does not
appear to be

mutually
exclusive with
dev_type_sfc.
Spot checking



ID Variable Name Issue Comments
a couple of

events
indicates they

are runway
incursions.

250 dev_type_sfc_flag Overlap with dev_type_air_flag

no missings,
367 are yes on

this and
dev_type_air_

flag. All
observations

in dataset are
Y on this
variable

251 ev_air_far_occ1_nbr Many Missings
6,413 missing,

only 21 filled
out

252 ev_air_far_occ2_nbr Many Missings
6,424 missing,

only 10 filled
out

253 event_detect_dev_code Missings 321 missing

254 event_detect_dev_otr_desc Other without description

1 entry for
event_detect_

dev_code of
other with

missing value
for description

255 event_lcl_time Missings

92 missing
values. All

other appear
in 0-2359

range

256 event_ri_flag Missings
1,816 missing.
How reliable is

this flag?

257 event_utc_time Missings 92 missing
values. All

other appear
in 0-2359
range. 91

coincide with
missing local
time. 1 entry

has missing lcl,
but filled in

UTC. Another
1 entry has



ID Variable Name Issue Comments
UTC filled in,

but lcl missing

258 fac_atc_none_flag Y,N,Missing 42 Y, 6241
missing, 151 N

259 fac_atc_otr_flag Y,N,Missing

6 Y, 6258
Missing, 170

N. Yes
corresponds

to relevant
entry in

description
field

260 fac_atc_unkn_flag Y,N,Missing 40 Y, 6258
Missing, 136 N

261 fac_rprt_fsdo_id_nbr Missing
1349 Missing.

Likely not
useful

262 fac_rprt_loc_id_code Missing 221 Missing

263 fact_equip_com_flag Y,N,Missing
309 Y, 4268

Missing, 1857
N

264 fact_equip_nav_flag Y,N,Missing

17 Y, 4442
Missing, 1975

N, likely not
relevant

265 fact_equip_none_flag Y,N,Missing 4892 Y, 350 N,
1192 Missing

266 fact_equip_otr_flag Y,N,Missing
259 Y, 4291

Missing, 1884
N

267 fact_equip_trnspndr_flag Y,N,Missing
16 Y, 4444

Missing, 1974
N

268 fact_equip_unkn_flag Y,N,Missing

375 Y, 4223
Missing, 1836
N. What is the
interpretation

? "Unknown
equipment

malfunctioned
" or "unkown
if equipment

malfunctioned
"



ID Variable Name Issue Comments

269 fact_wx_avoid_flag Y,N,Missing

40 Y, 4433
Missing, 1961

N, likely not
relevant

270 fact_wx_inacc_flag Y,N,Missing

12 Y, 4454
Missing, 1968

N, not
relevant

271 fact_wx_none_flag Y,N,Missing

5132 Y, 1063
Missing, 293

N, not
relevant

272 fact_wx_otr_flag Y,N,Missing
236 Y, 4312

missing, 1886
N

273 fact_wx_unkn_flag Y,N,Missing
304 Y, 4264

missing, 1866
N

274 fact_wx_vfr_imc_flag Y,N,Missing
47 Y, 4435

missing, 1952
N

275 fctr_equip_altm_flag Y,N,Missing

1 Y, 4453
Missing, 1980

N. likely not
relevant

276 fctr_equip_autoplt_flag Y,N,Missing

4 Y, 4451
Missing, 1979

N. likely not
relevant

277 form_i_version_code Missing
4340 Missing.
Few entires of

one version

278 form_pr_version_code Missing

4267 Missing.
Few entires of
8020-17 6/91

and TELEX

279 lat_long_srce_code Missing / Not in ATQA Data Dictionary

Not in ATQA
data

dictionary. All
values missing

280 loc_arpt_code Missing / Not in ATQA Data Dictionary

6183 missing.
See

loc_arpt_id_c
ode



ID Variable Name Issue Comments

281 loc_arpt_id_code Missing

160 missing.
Appears to be
the legitimate

version of
loc_arpt_code

. This field
name is not in

the data
dictionary

282 loc_city_name missing 99 missing

283 loc_drctn_degm_qty Missing / Unclear Definition

6242 missing.
Unclear what

this is
measuring

284 loc_dstc_nm_qty Missing / Unclear Definition

6186 missing.
Unclear what

this is
measuring

285 loc_intxn_id_code missing

All
observations
missing. This

appears to
relate to
enroute

space, so may
be legitimately

empty

286 loc_lat_deg_qty_pd Missing 1 entry, 6433
missing

287 loc_lat_min_qty_pd Missing 1 entry, 6433
missing

288 loc_lat_ns_code Missing
all entires

missing

289 loc_long_deg_qty Missing 1 entry, 6433
missing

290 loc_long_ew_code Missing
all entires

missing

291 loc_long_min_qty Missing 1 entry, 6433
missing

292 loc_nav_fac_code missing 6371 missing.
If the airport
code is filled

out, would
this be filled



ID Variable Name Issue Comments
out as well?

293 loc_oceanic_flag missing
Only N values

in dataset.
6297 missing

294 loc_state_code missing 101 missing

295 loc_tfc_ptrn_code UNK and missing

Signfiicant
missings.

Others are
unable to be

parsed into
existing

categories.
Use variable

as is for
demographic

purposes only

296 oprtr_flt_id_nbr Missing

Use RI flight
number

information as
it appears to
be filled out

more.

297 oprtr_ga_flag Y,N,Missing 4175 M, 1758
Missing, 501 N

298 oprtr_type_code UNK and missing

Coded missing
values as

unknown.
Suggest

deriving this
information

elsewhere for
ALL

observations
instead of just

PDs

299 plt_asp_viol_flag Y,N,Missing

502 Y, 4140
Missing, 1792

N. likely not
useful

300 plt_atc_instrn_desc Missings Number of
non-missing

observations
doesn't line up

with number
of Y flags.
Likely not



ID Variable Name Issue Comments

useful

301 plt_atc_instrn_flag Missings

2572 Y, 2752
Missing, 1110

N. Likely not
useful

302 plt_birth_date Illogical dates

Some
birthdates

indicate pilots
were < 10
years old.

Recoded those
to missing.

One indicates
pilot was

approx. 98
years old.

Leaving it for
now, but does

seem odd

303 plt_cert_nbr Missing

536 missing.
Appear to vary

in length (7-9
numbers.

Need to check
what valid
codes are

from external
source)

304 plt_cert_otr_desc_pd needs to be parsed for other major
certification categories

305 plt_certif_atp_flag Y,N,Missing
1927 Y, 3066

missing, 1441
N

306 plt_certif_cfi_flag Y,N,Missing
882 Y, 3798

Missing, 1754
N

307 plt_certif_coml_flag Y,N,Missing
1615 Y, 3324

missing, 1495
N

308 plt_certif_frgn_flag Y,N,Missing 104 Y, 1989 N,
4341 Miss. No

indication
other than

foreign.
Maybe want

to look at



ID Variable Name Issue Comments
other pilot

info to
determine
country of

origin?

309 plt_certif_mil_flag Y,N,Missing
61 Y, 4386

missing, 1987
N

310 plt_certif_none_flag Y,N,Missing

20 Y, 4403
missing, 2011

N. What is the
interpretation
here? Can you

fly without a
certification?

311 plt_certif_otr_flag Y,N,Missing
187 Y, 4300

missing, 1947
N

312 plt_certif_pvt_flag Y,N,Missing
2090 Y, 3081

Missing, 1263
N

313 plt_certif_rcrntl_flag Y,N,Missing

5 Y, 4414
Missing, 2015

N. very few Ys,
likely not

helpful. Could
we lump this

into
something

else?

314 plt_certif_stdnt_flag Y,N,Missing
410 Y, 4146

Missing, 1878
N

315 plt_certif_unkn_flag Y,N,Missing
178 Y, 4310

Missing, 1946
N

316 plt_city_name Missing 510 Missing

317 plt_ck_2yr_flt_rvw_date Missing

3466 missing.
Need to check

how pilot
checks relate

to one
another

318 plt_ck_atp_flt_test_date Missing 6226 missing



ID Variable Name Issue Comments
319 plt_ck_cmptncy_flt_date Missing 5723 Missing

320 plt_ck_flt_test_date Missing 5796 Missing

321 plt_ck_inst_test_date Missing 5369 Missing

322 plt_ck_otr_date Missing 6052 Missing

323 plt_ck_otr_desc Parse of useful categories

Parsed for
other

common
answers and

created a flag
for solo

endorsement

324 plt_ck_profic_ck_date Missing 4901 Missing

325 plt_ck_rte_ck_date Missing 5571 missing

326 plt_ck_simltr_date Missing 5640 Missing

327 plt_dstrctn_flag_ Y,N,Missing

1218 Y, 3598
Missing, 1618

N. Likely not
useful

328 plt_duty_l24hr_hr_qty_pd missing

Can't simply
recode this as
GA pilots will

not have an
"on duty"

number but
will have a
flight time

number. May
have to just

take variable
as is or simply

recode
missings to 0.

Re-opened on
10/24/2011

329 plt_enfrc_code Missing, UNK

coded
unknown on
missing and

made variable
numeric. Also

recoded
"1MORE" to

"YES" and
"NONE" to

"NO"

330 plt_fatig_flag_ Y,N,Missing 156 Y, 4343



ID Variable Name Issue Comments
missing, 1935

N.

331 plt_flt_l24hr_hr_qty Missing 2390 missing

332 plt_flt_leg_hr_qty Missing

2248 Missing.
3 entires > 24
(values of 30,

40, 70.4)

333 plt_inadqt_acft_flag Y,N,Missing
33 Y, 4429

Missing, 1972
N

334 plt_inadqt_aip_flag Y,N,Missing
165 Y, 4344

Missing, 1925
N

335 plt_inadqt_arpt_flag Y,N,Missing 918 Y, 3892
Missing, 1624

336 plt_inadqt_atc_flag Y,N,Missing
634 Y, 4110

Missing, 1690
N

337 plt_inadqt_avion_flag Y,N,Missing
132 Y, 4372

Missing, 1930
N

338 plt_inadqt_crew_flag Y,N,Missing
132 Y, 4382

Missing, 1920
N

339 plt_inadqt_english_flag Y,N,Missing
65 Y, 4406

Missing, 1963
N

340 plt_inadqt_otr_flag Y,N,Missing
447 Y, 4157

Missing, 1830
N

341 plt_inadqt_preflt_flag Y,N,Missing
215 Y, 4318

Missing, 1901
N

342 plt_inadqt_trmnlgy_flag Y,N,Missing
483 Y, 4141

Missing, 1810
N

343 plt_inadqt_unkn_flag Y,N,Missing
408 Y, 4199

Missing, 1827
N

344 plt_inadqt_wx_flag Y,N,Missing
34 Y, 4434

Missing, 1966
N



ID Variable Name Issue Comments

345 plt_inst_code UNK and missing

Recoded
missing to

unknown and
converted to

numeric.

346 plt_locat_tfc_flag_ Y,N,Missing
12 Y, 4445

Missing, 1977
N

347 plt_lost_flag__ Y,N,Missing
445 Y, 4175

Missing, 1814
N

348 plt_med_first_flag Y,N,Missing

1959 Y, 3067
Missing, 1408

N. Medical
flags likely not

useful

349 plt_med_last_date Missing 1119 Missing

350 plt_med_none_rqrd_flag Y,N,Missing
54 Y, 4401

Missing, 1979
N

351 plt_med_outdt_flag Y,N,Missing
60 Y, 4407

Missing, 1967
N

352 plt_med_scnd_flag Y,N,Missing
1222 Y, 3656

Missing, 1556
N

353 plt_med_self_certif_flag Y,N,Missing
4 Y, 4432

Missing, 1998
N

354 plt_med_spl_flag Y,N,Missing
36 Y, 4413

Missing, 1985
N

355 plt_med_thrd_flag Y,N,Missing
2250 Y, 2994

Missing, 1190
N

356 plt_med_unkn_flag Y,N,Missing
289 Y, 4267

Missing, 1878
N

357 plt_mkmd_hr_qty Missing Created
variable

plt_mkmd_hr_
round that is

roudned to
nearest 10



ID Variable Name Issue Comments
hours. That

variable may
require

additional
rounding on

the upper end,
or a flag

indicating over
soem

threshold

358 plt_mkmd_l90d_hr_qty_ Missing

Created
plt_mkmd_l90

d_hr_round
that is

rounded to
nearest 10

hours. May
require

additional
rounding at

highest levels
or variable
indicating

above som
threshold.

359 plt_none_flag_ Y,N,Missing

921 Y, 3847
Missing, 1666

N. Unclear
what this flag

indicates?

360 plt_not_scan_flag_ Y,N,Missing
81 Y, 4395

Missing, 1958
N

361 plt_otr_flag_ Y,N,Missing

669 Y, 4035
Missing, 1730

N. Not all Ys
have

descriptions

362 plt_ovrwrkd_flag Y,N,Missing
66 Y, 4406

Missing, 1962
N

363 plt_pr_unkn_flag Y,N,Missing

574 Y, 4190
Missing, 1670
N. Not sure if

useful

364 plt_resp_tcas_adzy_flag_ Y,N,Missing 0 Y, 4452
Missing, 1982



ID Variable Name Issue Comments
N. Makes

sense as we
want ground

incidents.
Possible some

of the
missings are

possible Ys

365 plt_rtng_gldr_flag Y,N,Missing
136 Y, 4332

Missing, 1966
N

366 plt_rtng_lta_flag Y,N,Missing
21 Y, 4413

Missing, 2000
N

367 plt_rtng_mel_flag Y,N,Missing 3109 Y, 2336
Missing, 989 N

368 plt_rtng_mes_flag Y,N,Missing
60 Y, 4392

Missing, 1982
N

369 plt_rtng_none_flag Y,N,Missing
220 Y, 4279

Missing, 1935
N

370 plt_rtng_otr_flag Y,N,Missing
380 Y, 4187

Missing, 1935
N

371 plt_rtng_rotor_flag Y,N,Missing
338 Y, 4197

Missing, 1899
N

372 plt_rtng_sel_flag Y,N,Missing 4710 Y, 1338
Missing, 386 N

373 plt_rtng_ses_flag Y,N,Missing
488 Y, 4109

Missing, 1837
N

374 plt_rtng_unkn_flag Y,N,Missing
255 Y, 4278

Missing, 1901
N

375 plt_scan_flag Y,N,Missing
154 Y, 4346

Missing, 1934
N

376 plt_sick_flag Y,N,Missing
13 Y, 4444

Missing, 1977
N

377 plt_total_hr_qty Missing generated
plt_total_hr_r



ID Variable Name Issue Comments
ound which is

rounded to
nearest 10

378 plt_total_l90d_hr_qty Missing

Created
plt_total_l90d

_hr_round
which is

rounded to
nearest 10

379 plt_trnspndr_off_flag_ Y,N,Missing
11 Y, 4446

Missing, 1977
N

380 plt_unkn_flag_ Y,N,Missing
380 Y, 4218

Missing, 1836
N

381 remarks field Not in dataset

No remarks
field was

included in
dataset

382 rprt_atchmnt_flag Y,N,Missing 5168 Y, 1251
Missing, 15 N

383 sepn_ft_code missing 365 misisng

384 sepn_hrzntl_ft_qty missing

use the RI
variable for

demographic
purposes. Not

worth the
effort to

combine the
two.

385 sepn_hrzntl_unkn_flag missing, inconsistent

6261 missing -
all missing on

sepn_hrzntl_ft
_qty as well.

18 Y values
have missing

sepn_hrzntl_ft
_qty. 137 have

N values, but
missing

sepn_hrzntl_ft
_qty.

386 sepn_long_min_qty missing 6433 missing

387 sepn_long_unkn_flag missing 6274 missing



ID Variable Name Issue Comments
388 sepn_loss_acft_air_flag Missing, Yes, No, values 4,146 missing.

389 sepn_loss_acft_gnd_flag Missing, Yes, No, values

3819 missing.
22 Yes on both

this and
sepn_loss_acft

_air_flag.
Narrative not

included

390 sepn_loss_na_flag Inconsistent. Missing values

1135 missing.
How does this

relate to
sepn_loss_unk

_flag?

391 sepn_loss_obstn_flag Missing, Yes, No values 4350 missing

392 sepn_loss_persnl_flag Missing, Yes, No values 4334 missing

393 sepn_loss_unkn_flag Missing, Yes, No values 4282 missing

394 sepn_loss_veh_flag Missing, Yes, No values 4314 missing

395 sepn_no_flag Missing, Yes, No values

Variable used
for

demographic
only. Missings

only appear
with missing

and no
appears only
with no. safe

to assume
missing = no

396 sepn_no_flag drop observations that are Y on this and one
of the other sepn_ flags

Only 9
observations

with this
property. Can

be dropped
later (flag

generated as
suspect_sepn_
flag) if desired.

397 sepn_slant_ft_qty Not in data dictionary

Variable in
dataset, but

not in data
dictionary

Slant range separation? Not

398 sepn_ver_ft_qty Missing values Use RI
information

for
demographic



ID Variable Name Issue Comments
purposes. Not

worth the
effor to

combine the
two.

399 sepn_ver_unkn_flag Missing, Yes, No values 6272 missing

400 Hand Matching

When hand
matching

records, a
range of +/- 30

min was used
to determine

if two records
were

candidates for
matches.

401 acft_invlvd_code Missing values, "UNK", caps out at "FOUR+"

What do
missings

mean?
Presumably

you can't have
a PD without a

pilot/aircraft

FROM FAA: Must be data error.
In many cases, the forms are not

completed properly, so there will

402 acft_invlvd_qty conflicts with acft_invlvd_code

Some with
acft_invlvd_co

de == "TWO"
have

qunaitities
above 2. Some

with missing
codes have

filled out
quantities

403 arpt_ctl_code 175 missing. 

Assuem that
non-

controlled
airports will

have no
runway

incursions.
Possible to
drop these

from the
analysis?

FROM FAA: Yes, non-towered
airports will not have RI's (But

there could be PD's). Let's drop

404 dev_air_acft_equip_flag many missing what do
missing values

indicate



ID Variable Name Issue Comments
different from

"Y" or "N"

405 event_utc_date The only date provided for the incident is
the UTC date

The UTC date
can vary from
the local date

(e.g. when the
local time is
late and the
UTC offset is

large). Is other
date

information
available in

the dataset?

406 RPRT_OTR_PR_OED_NBR

This appears
to be indicate

that a PD
report had a
preliminary

OE/D
number?

Volpe does
not have this

field in the
data provided

407 ac1cat more possible entries than needed

Dropping
variable and
creating our

own
categories
from flight

number

408 ac1id values of "N/A" "N/A" values
make sense

for V/PD.
There are 29

incidents with
ac1id = "N/A"

but are not
V/PDs. The 29

incidents are
OE and OD.

Quick scan of
record

narratives
show no

aircraft
involved.

Entires seem

FROM FAA: There will be some
events that are not V/PD's. E.g.,

ATC issues incorrect rwy crossing
clearance to a vehicle. This is an

OE, but will not have an AC value.



ID Variable Name Issue Comments
valid. Ac2id

exhibits same
patterns

409 ac1id contains more information than needed

410 ac1type values of "N/A"

Similar set up
to ac1id. 29

OE/OD N/As
look

legitimate.
Ac2type

exhibits same
patterns

411 ac1type more possible entries than needed
Variable needs to be translated
to the proper number of super-

412 ac2cat more possible entries than needed

Creating our
own

categories
from flight

number

413 ac2id contains more information than needed

414 ac2type more possible entries than needed
Variable needs to be translated
to the proper number of super-

415 acmainttaxi Value of "Y" and missing recoded
missing as N

416 adjustedrank 1595 missings, 1 "E"

Dropping all
cases with

missing
adjusted rank

as those are
surface

incidents

417 amassinservice
ASDE-X option shows up before reasonably

possible

Is it possible
these are

ASDE-3
aswell?

need clarification from FAA

418 arptempveh  value of "N", "Y", and missing

Unclear on
difference

between N
and missing

missings do appear to be "no",

419 arptid one instance were not equal to locid Lake Hood
airport. Locid

== LHD, arptid
== ANC. Likely

FROM FAA: I think LHD and ANC
are basically the same place. One

is on land the other is on the
adjacent lake. I believe one tower



ID Variable Name Issue Comments

just a typo

420
assessmentremarkscomments

onriscm not needed

421 catrank will use adjrank intsead

422 city not needed

423 collision Entry of "UNK", N/A, and 179

179 is most
confusing.

"YES" entry is
not given a

rank. All "Y"s
are rank "A".

No missing
values for this

field. UNK is
rank C along
with the 179

entry. All
other's are

N/A

will recode all non Y's to N's, the
179 and UNK are adjusted rank C

424 constrnpersl Value of "Y" and missing

Assume that
missings are

"N"s, but it is
possible that

some records
may be

missing for
other reasons

treat missing as unknown/NO

425 crsdholdshortlineonly inconsistent entries Missing, Y, N,
and specific

taxi ways are
listed. THe

missings
appear to be

mostly
incidents

where the
hold short line

was not in
play.

However,
some

narratives
suggest that a
hold short line

was crossed
(such as
entering

In general, specifics can be "YES",
some additional research needed

on the cases where this and rwy
are Yes, and spot checking to
make sure that missing = no



ID Variable Name Issue Comments

runway
without

clearance)

426 crsdrwyortwy inconsistent entries

Missing, N, Y,
UNK, specific

runways all
listed

In general, specifics can be "YES",
some additional research needed

on the cases where this and rwy
are Yes, and spot checking to
make sure that missing = no

427 ctlrtrng
 value of "N", "Y", and missing. Also value of

"N/A"

Unclear
between N,

N/A, and
missing. How

does this
compare to

controller
fields in OE
database?

428 dateevent not needed

429 dateincdtclsfdrisi not needed

430 daterptrcvd not needed

431 daylightsavings not needed

432 dayofthewk not needed

433 dupreport 100 non-missing entires

How are the
non missing

entires to be
interpreted? 2

cases were
dupreport

entry is
equivalent to

report number

434 dupreport not needed

435 enteredrwy inconsistent entries

Missing, N, Y,
UNK, specific

runways all
listed

In general, specifics can be "YES",
some additional research needed
on the cases where SI = 1 and this
is YES, and spot checking to make

436 faafemp Value of "Y" and missing Assume that
missings are

"N"s, but it is
possible that

some records
may be

missing for



ID Variable Name Issue Comments
other reasons.
Possibly not of

interest

437 farpart91121135mil
Data dictionary says it should pertain to PDs
only. Apepars as if some OD/OEs have non-

missing/"N/A" entries. 

Does this
apply only to

PDs? 3
missings, 1

unkown. Most
OD/OE are

N/A, but not
all. Suspect

that some of
the N/A

OE/OD could
be coded as

something
else

The trfmix variable contains this
information + non PDs, drop

438 finalprelimrptstatus not needed

439 frngacorpilot Value of "Y" and missing

Assume that
missings are

"N"s, but it is
possible that

some records
may be

missing for
other reasons.

Appears as if
some missing
have mention
of snowplows

in narrative.
We may need

to parse the
narrative

440 holdshortinstrissued inconsistant entries

Missing, N, Y,
Unk all listed.
One entry of

TWY C

441 holdshortrdbk inconsistant entries

Missing, N, Y,
Unk all listed.

Missings seem
to coincide

with missing
holdshortinstri

ssued

treat missing as unknown except
check on 5 Y's that are N for hold

442 horizontaldistanceormileage inconsistant entries Transformed
to numeric.

Ranges



ID Variable Name Issue Comments
coverted to
means and

miles
converted to

feet.

443 hour not needed

444 inatqa 2 missings

How reliable is
this field?

Matching on
report number
gives 508 that

are
inatqa="N"
but match
exactly to
records in

ATQA OE data

445 inatqa not needed

446 intersectingrwydeptorarr Missing, N/A, UNK, Y agreed, may use AP var instead

447 lahso B,N,N/A,Y, and missing
2 B's, 327

missings, 2
N/As

missings are almost al lfrom same
year, likely no. However, only 17

448 landedtaxiingin Missing, N/A, UNK, Y

What is the
relationship

between
Missing and
N/A? What

are UNK?

in general, missing as N makes
sense, check about 2001 where

missings are from 2001 and 2010,
FAA will manually review or we

will dump 2001 (and 2010?)

449 lawenforcement Value of "Y" and missing

Assume that
missings are

"N"s, but it is
possible that

some records
may be

missing for
other reasons

replace missing with no/unknown

450 lndgdeptdtwyorclsdrwytwy Missing, N/A, and Y values

What is the
relationship

between
Missing and

N/A

451 lndgordeptdwoclrccomm Missing, N/A, and Y values

What is the
relationship

between
Missing and

N/A



ID Variable Name Issue Comments
452 localtime not needed

453 meetsicaostandardsri Missing, Yes, No, UNK values

missing, No,
and UNK all

coincide with
missing

adjusted rank.
All Yes values

have an
adjusted rank.

Further
indicates we

should ignore
anything

without an
adjusted rank

454 meetsicaostandardsri not needed

455 min not needed

456 month not needed

457 narrative not needed

458 notes not needed

459 oecombpstns Y,N, UNK, MISSING, as well as which specific
positions were combined

Converted
specific

listings to Y
and all others

to N

460 originalnarrative not needed

461 pdfassmt Missing, N/A, Yes only 2 N/A.
What is this?

462 pdfassmt not needed

463 phaseofflight inconsistent entries

Collapsed to 1
variable for

each aircraft
and

normalized
codings.

464 report_part not needed

465 preicaocatrank not needed

466 ri not needed

467 riscranking not needed

468 riscscenario not needed



ID Variable Name Issue Comments

469 prvtcitzveh  value of "N", "Y", and missing. Also value of
"N/A"

Unclear on
difference

between N
and missing

and N/A

470 ri Some observations coded as "N". Should
these be exlcuded from analysis?

two options
for the field:

"Y" or "N", no
missing

values. When
compared

against the
"adjustedrank

" field, some
coded as "N"

are given a
rank of D.

Some "N" are
given no rank.

All "Y" are
given a rank.

Presume that
subset of non-
missing ranks

are the
relevant
dataset.

471 state not needed

472 rwytwyconstrn Value of "Y" and missing

Assume that
missings are

"N"s, but it is
possible that

some records
may be

missing for
other reasons.

Appears as if
some missing
have mention
of snowplows

in narrative.
We may need

to parse the
narrative

473 servicearea not needed

474 time not needed

475 timezone not needed



ID Variable Name Issue Comments

476 snowrmvlveh Value of "Y" and missing

hand checked
records

containing the
word "snow."

Hand coded
those that
indicated

snow removal
was

happening at
the airport.

477 sutdentpilot Value of "Y" and missing

Hand checked
records

containing the
word

"student"
(case

insensitive) th
at did not

have a Y flag
on this

variable.
Found some

that were
student pilots,

hand coded
those as Ys.

478 taxiingoutfordept Missing, N/A, UNK, Y, N
Recoded

missing and
N/A to N.

479 toorlndgrwy not needed

480 tiph Value of "Y" and missing

Data
dictionary says

this should
contain

location. No
location is

given.

481 tiphdptdwoclrnc Value of "Y", "N", and missing

482 typeerrorcode not needed

483 utcoffset not needed

484 v78 not needed

485 toorlndgrrwy inconsistent entries N, N/A, UNK,
YES, as well as

specifics
listed. 2



ID Variable Name Issue Comments

missing

486 toorlndgrrwy Missing, UNK

Lots of
missings. 10

UNK. Unclear
how they

relate

91 = aircraft operating under 14
CFR Part 91 (general aviation

121 = aircraft operating under 14
CFR Part 121 (commercial air

125 = aircraft operating under 14
CFR Part 125 (Not air carrier, but

AIRPLANES HAVING A SEATING

PASSENGERS OR A MAXIMUM
PAYLOAD CAPACITY OF 6,000

129 = aircraft operating under 14
CFR Part 129 (foreign air carrier)

135 = aircraft operating under 14

MAINT TX = Maintenance Taxi

487 tugs missing values

488 typeerrorcode No codebook for values

No way to
decode

numerical
values

FROM FAA: These are RISC model
scenarios. I can provide list. But, I
don't think we can use this in the

model (too many scenarios),
unless we collapse scenario

489 verticaldistance inconsistant entries and many missings

Recoded to
numerica.

took means
for ranges.

490 vmc Y, N, UNK, and missing replace UNK and missing as N

491 vpdsauthonarptormvntarea Lots of missings. Yes, No, Missing

Coded
missings to

"No Vehicle".
Note that

some "Y"s are
non-V/PDs



ID Variable Name Issue Comments

492 Need to decide about how to handle LHD
LHD is a

seaplane base

493 Sample Size

249 OE/OD
records in the

RI database
did not match

to any ATQA
data

494 Sample Size

1048 OE/OD
records

matched
between the
RI and ATQA

data

495 Sample Size

456 records in
the ATQA data
did not match

to RI data.
Need to

explore why
these don't

match

496 Sample Size

1668 PD
records in the

RI database
did not match
to ATQA data

497 Sample Size

4361 records
matched

between RI
data and

ATQA

498 Sample Size

2074 records
in ATQA data

did not match
any PDs in the

RI data

499 fac_cnflct_alert_ncode_oe Don't understand categories Categories are
unclear. Can't

seem to find
any

information
on the

internet. Need
Greg's input

on the
meaning of



ID Variable Name Issue Comments

the categories.

500 fac_atc_artcc_code_pd Should be missing for all our observations.
21 observations.

Spot checked
records

appear to be
runway

incursions.

501 fac_atc_fss_code_pd Should be missing. 12 observations

Overlaps
heavily (9/12)

with
fac_atc_artcc_

code. These
records

appear to be
runway

incursions.

502 fac_atc_tracon_code_pd should be missing. 67 non-missing

spot checked
records

appear to be
runway

incursions.

503 acft_lcl_flt_code_pd Recode Unknown to Missing

Recoded
unkown to

missing and
converted
variable to

numeric.

504 acft_phase_taxi_flag_pd Dropped Variable
use

phaseofflight
instead.

505 acft_tkof_flag_pd Dropped variable use phase of
flight instead

506 acft_phase_turn_flag_pd Dropped variable
use

phaseofflight
insterad

507 trfcmix Contains info for two AC

Split variable
into one for

each aircraft
and encoded

into human
readable parts

508 bullseye 18/30 Core 30 airports had incorrect data Variable is of
insufficient
quality and

cannot be
used for



ID Variable Name Issue Comments
analysis at this

time.

509 taxiways crossing runways 15/30 Core 30 were incorrect

Variable is of
insufficient

quality to be
used for

analysis at this
time.

510 plt_dstrctn_desc Parse for other common responses

Created flags
for:

instruction
(i.e. giving

instruction),
student (i.e.

instructing
student OR

student was
asking

questions - th
is may be
combined

with
instruction),

check list,
traffic,

passenegers,
radio related,
and weather

511 plt_inadqt_otr_desc Parse for common answers

Parsed for
common

responses and
created a flag
for inadquate
knowledge of

signs and
markings.

512 plt_rtng_otr_dsec Look for common responses that need
another flag

Variable
appears to

contain mostly
duplicate

information.
Thos cases

where
respondents

listed specific
aircraft (i.e.

DC9) appear
to be covered

by the other



ID Variable Name Issue Comments
flags present

for that
record.
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APPENDIX C: STATISTICAL CONCEPTS

C.1. Two-way Chi-Squared Tests

The difference between relative frequency and overall frequency raises the need to test for differences
in the two. This is where a (two-way) Chi-Squared test103 can be useful.

The Chi-Squared test compares the observed values of an n by k table to their expected values. The
observed values are the observed frequencies of the intersection of two categories (represented by the
row and column labels). In this case, the expected value for a cell of the table is the marginal percentage
for the column applied to the row total.104 For example, in Table 1, the marginal percentage for OE
column is approximately 14.4% (1,268/8,812). The row total for category A incursions is 132. Thus, the
expected value for category A OE incursions is approximately 19 (.144 x 132). A generalized way to
calculate the expected value is:

where:

Ei,j = Expected value for cell i, j

Oi,j = Observed value for cell i, j

N = Total observations

n = number of rows

k = number of columns

Constructing the expected values in this way is a test of independence between the rows and columns.
That is, this tests for an association between the rows and columns. The test statistic is calculated by
finding the difference between the observed and expected values for each cell, and then totaling them,
shown formulaically as:

103 While there exist other Chi-squared tests, the two-way Chi-Squared test is the most commonly used and the
only one appearing in this report; all further references will drop the “two-way” term.

104 Note  that  the  opposite  formulation  of  marginal  percentage  for  the  row  applied  to  the  column  total  is
equivalent.
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This test statistic is distributed Chi-Squared with degrees of freedom (n – 1)*(k – 1). In Table 1, this
results in 6 degrees of freedom. Similar tests will be applied in the following sections regarding other
combinations of variables.

C.2. Box and Whisker Plots

The box and whisker plot concisely presents the percentiles of the distribution and outliers. The core of
this plot type is the box. The box represents the middle 50% of the distribution. The lower bound of the
box represents the 25th percentile, the middle line represents the 50th percentile (or median), and the
top of the box represents the 75th percentile. The second component of the plot type is the whiskers.
These  whiskers  attempt  to  represent  a  “reasonable”  range  of  the  data.  Specifically,  the  whiskers
encompass the data that is within 1.5 times the interquartile range of the 25th and 75th percentiles.
Data outside the whiskers are represented by dots, and are considered outliers. An annotated example
follows.
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Figure 65 - Annotated Box and Whisker Plot

C.3. Kruskal-Wallis Tests

The Kruskal-Wallis test is an extension of the Mann-Whitney (or Wilcoxon) rank-sum test to two or more
categories. The procedure for this test replaces each observation with its rank in the overall dataset and
then calculates the mean rank for each category. This procedure jointly  tests if  the categories have
statistically different mean ranks (i.e., if the ranks are distributed randomly among the categories). In
other words, a significant test statistic indicates that the categories have different distributions of the
continuous  variable.  This  test  is  particularly  useful  for  small  samples,  as  it  requires  no  asymptotic
distributional  assumptions.  Because the test  examines ranks rather than observed values,  the exact
distribution of the test statistic can be calculated. However, for data with several groups and a moderate
number  of  observations  in  each  group,  the  distribution  is  well  approximated  by  the  Chi-Squared
distribution.105 More information on the calculations  underlying  the Kruskal-Wallis  rank test  can be
found in Siegel & Castellan (1988).

Given that the Kruskal-Wallis test indicates that the groups are jointly significant, it may be interesting to
determine which groups are in fact different. The mean ranks can be compared in a pairwise fashion to
determine this. However, this introduces a significant statistical problem, multiple comparisons.

105 Siegel & Castellan (1988).
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For example, if  there are four groups to compare, there are 6 total  pairwise comparisons.  Suppose
further  that  that  standard  significance  level  of  5%  is  assumed  (i.e.  the  null  hypothesis  is  rejected
incorrectly 5% of the time). Lastly, for this example, suppose that none of the groups actually differ (i.e.,
the null hypothesis is true for all comparisons). Thus:��ሺ���� ���������� ������ ��0 ����������������ሻ= 1 − ��ሺ���� ��0  ����������������ሻ= 1 − ሺ. 95ሻ6 ≈ 0.2649 

Thus, for six comparisons the likelihood of rejecting at least one null hypothesis when all are known to
be true is greater than 25%. Put simply, even of all 4 groups are the same, there is a 25% probability of
falsely  identifying one difference  as  statistically  significant. Therefore,  a  correction to the statistical
significance criteria is required to compare the groups pairwise and avoid falsely identifying groups as
significant.

A simple correction is to compare each test at a smaller significance level. The one employed in this
analysis  (referred to as the Bonferroni  method) uses a pairwise significance rate of  α/k,  where  α is
desired significance level for the overall set of tests and k is the number of tests. This ensures that the
overall false rejection rate among all the tests combined is no greater than the desired overall  false
rejection rate. Thus, in the above example, a pairwise significance level of .0083 (0.05 / 6) ensures that
the overall false rejection rate is less than or equal to .05.106

C.4. Interpreting Regression Output

The  two  main  outputs  of  the  regression  models  presented  in  this  report  are  the  coefficients  and
standard errors. These two values are then used to compute the remaining output presented in the
tables  (the  p-value  and  the  confidence  intervals).  In  general,  each  piece  of  output  has  the  same
interpretation across models, but where there are differences they will be noted.

The  piece  of  output  that  receives  the  most  attention  is  the  estimated  coefficient.  The  coefficient
represents the impact of the independent variable on the dependent variable. For example, as in Table
183, the estimated coefficient for “# of Aircraft Involved” represents how the dependent variable (the
probability of a category A incursion) changes with respect to the value of “# of Aircraft Involved.” In this
particular example, the coefficient is positive, indicating that the dependent variable increases as the
independent variable increases. 

For ordered models, the sign of the coefficient indicates the direction of the effect. That is, positive
values indicate that the probability of a category A incident (for ordered models) or a severe incident
(for binary models). Negative values indicate a complementary decrease in probability. This convention

106 Note that in some sense the multiple comparison problem applies to the analysis as a whole, as well. While
the criteria for statistical significance were adjusted for the Kruskal-Wallis tests, they were not done so on a report-
wide basis.  In other words, this paper examines a large number of variables and presents the associated test
statistics. In all likelihood, there is a high probability that at least one of the tests falsely identified a significant
relationship when there is none. However, it is impossible to determine which particular test might be reporting
erroneously. More focused research can further corroborate the findings in this analysis.
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is  not  true for  the multinomial  models.  In  those  instances,  it  is  not  the absolute  size  or  sign of  a
coefficient  that  is  important;  rather,  it  is  the size  and sign of  that  coefficient  relative  to  the other
coefficients presented in the model that are important. 

Coefficients for the binary models are presented as odds ratios. These are direct transformations of the
coefficients, but work multiplicatively with respect to the odds of a severe incursion. Thus, if the odds
ratio is less than one, the odds of a severe incursion decrease as the independent variable increases. If
the odds ratio is greater than one, then the odds of a severe event increase as the independent variable
increases.107

Finally, it is important to note that the coefficients do not directly translate to changes in probability. For
all  models  presented  in  this  report,  the  coefficients  must  be  combined  and  then  transformed  to
understand the direct  impact on probabilities.  In many cases,  this  transformation is  mathematically
complex.  Thus,  for the multinomial  models the relevant graphs and tables indicating the change in
probability  are  provided.  As  the ordered and binary  models  were not  of  primary  interest,  no such
calculations were done for those models. Such a calculation could be performed using the coefficients
provided in the model.

The second major category of output presented is the standard errors. The standard error measures
how precisely the coefficient was estimated. Smaller standard errors indicate that the coefficient was
precisely estimated.

The p-value is calculated with the coefficient and the standard error. The p-value measures how likely it
is that the estimated coefficient is different from zero (or different from one in the case of an odds
ratio).  Coefficients of zero indicate that there is no relationship between the given variable and the
dependent  variable.  The  P-value  approximates  how  likely  it  would  be  to  observe  the  estimated
coefficient if the  actual value of the coefficient was zero. In other words, the p-value represents how
likely it is that the estimated coefficient was a product of a random association between the dependent
variable  and  the  independent  variable.  In  general,  it  is  standard  practice  to  accept  that  a  random
process did not generate the estimated coefficient if the p-value is less than .05.

The last  piece of  information presented is  the 95% confidence interval (CI).  The confidence interval
represents an alternative description of the uncertainty surrounding a parameter estimate. It consists of
two values, the lower bound (LB) and upper bound (UB). These values represent the endpoints of an
interval representing the “most likely” values for the estimated coefficient. The estimated coefficient is
the midpoint of this interval and the width of the interval is determined by the standard error. The
confidence interval provides two pieces of information. First, the interval represents plausible values of
the estimated coefficient, given the data on hand.108 Second, if the confidence interval contains zero,
this is equivalent to a p-value greater than or equal to .05. Thus, the p-value and confidence interval
both capture the uncertainty surrounding the coefficient estimate.

107 As a side note, some independent variables represent the “status” of an aircraft, such as Commercial Carrier
status. These variables are “flags” and are measured as binary (0 or 1) variables. Thus, an increase in one of these
variables is going from 0 to 1 (i.e., from not Commercial Carrier status to Commercial Carrier Status).
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C.5. A Question of Interpretation: Bayesian versus Frequentist Models

Regardless  of  the model  implemented,  there is  an overarching  concern about the interpretation of
results,  which  cascades  backwards  into  how the  models  themselves  are  run.  There  are  two major
schools of thought regarding the interpretation of estimation results: Bayesian and Frequentist. Discrete
choice models can be implemented in either context. The difference lies in how the results are obtained
and interpreted.

C.5.1. Frequentist Econometrics

Most people who have some statistics or econometrics training have been taught frequentist methods.
There are a variety of statistical packages that implement a wide array of frequentist methods for any
number of models. By and large, frequentist econometrics is the most common type of econometric
study. Frequentist techniques in general are outlined in Section 4.1.2.

Treating β as fixed constants is a direct contrast to Bayesian econometrics, as discussed in the following
section.

C.5.2. Bayesian Econometrics

The basis of Bayesian econometrics is the use of Bayes’ Rule.109 Bayes’ Rule can be written as:

��ሺ��ȁ��ሻ = ��ሺ��ȁ��ሻ��ሺ��ሻ��ሺ��ሻ  
 

For example, if event A is having a disease and event B is a positive result from a test for that disease,
P(A|B) is the probability of having the disease given a positive test result and can be calculated as above.
The essence of this

 formula is that it combines information about the data – in this case the outcome of the test (the factor
P(B|A)/P(B)) – and information about the unconditional probability of the outcome – being sick (the
factor P(A)). In this example, Bayes’ Rule would be:��ሺ��������ȁ���������������� ������������ሻ = ��ሺ���������������� ������������ȁ��������ሻ��ሺ��������ሻ��ሺ���������������� ������������ሻ  

 
The formula above can be extended to a regression context and used to describe a wide variety of
models. Suppose the regression model has data y and parameter set θ.110 The above formula can be
rewritten as:

108 Specifically, the confidence interval is an interval that contains the “true” value of the coefficient with some
probability, in this case 95% probability. However, no one confidence interval can be said to contain the true value
of the parameter. It is important to remember that the confidence interval is estimated from the data available,
and thus would change as the data changes.

109 Koop (2003).
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��ሺ��ȁ��ሻ = ��ሺ��ȁ��ሻ��(��)��(��)  
 

This relationship can be simplified, removing extraneous information about y. It reduces exactness of
the expression but maintains the most important part of the relationship defined in Bayes’ Rule (i.e., the
proportional relationship between  and y). When simplified, the relationship is expressed as:��(��|��) ∝ ��ሺ��ȁ��ሻ��(��) 

 
p(θ) is referred to as the “prior distribution” and represents the information available about θ before
looking at the data. This information can come from previous research or the researcher’s informed
beliefs. p(y|θ) is called the “likelihood” and represents the probability distribution of the data given a
parameter set. Finally, p(θ|y) is called the “posterior distribution” and captures all available information
on θ – information available from the data and from the prior distribution.111 This framework can be
used to estimate parameters for a variety of models based on differing likelihood functions.

As Koop notes, the probability distribution p(θ|y) is  “of fundamental interest for an econometrician
interested in  using  data  to  learn  about  parameters  in  a  model.”112 Bayesian methods focus  on the
interpretation and analysis of p(θ|y) to understand the relationship between θ and y.

C.5.3. Making the Decision: Comparing and Contrasting

The equations above outline the two big departures between the frequentist and Bayesian schools of
thought.  First,  the two methods generate different results.  The result  of  Bayesian estimation is  the
posterior distribution p(θ|y) and is a probability distribution for θ. There is no single value for θ, rather
each  value  has  a  probability  of  being  observed.  The  probability  of  observation  is  informed by  the
likelihood function (i.e., the data) and the prior distribution. A result with higher variances indicates
increased uncertainty about the probability of any single value. This distribution can be summarized
through statistics such as the mean, median, or variance, but the fundamental result is a probability
distribution.

This is subtly different than the frequentist result, which is a point estimate of the “true” value of . That
is, in frequentist statistics,   has a value that can be determined to some precision given the data (an
estimate of  ), and there is variance around that point that can be characterized as a function of the
data. A wider variance around  implies less certainty about the estimate, much as increased variance in
a  Bayesian  posterior  implies  increased  uncertainty  about  each  possible  value.  For  frequentists,  the

110 Bayesian econometrics often uses  instead of  to reduce confusion when comparing the two methods.

111 Koop (2003).

112 Ibid.
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fundamental result is this point estimate; this is contrasted with the Bayesian fundamental result, which
is a probability distribution.

The second difference that these equations illuminate is the inclusion of prior information. The inclusion
of prior information in the estimation of parameters is unique to Bayesian analysis. The inclusion of the
prior is a way to introduce additional information not contained in the data into the estimation. These
prior beliefs about the distribution of the parameters can be highly specific or only loosely defined. In
the extreme case, the researcher can choose an uninformative prior, essentially saying that there are no
prior beliefs. This is akin to specifying a distribution with infinite variance for the prior and forces the
estimation to rely completely on the data. When an uninformative prior is specified, the estimation
results are similar to frequentist estimations in the sense that they rely solely on the data (i.e.,  the
likelihood function).

A final point worth making is a similarity between Bayesian and frequentist methods. Both discussions
above invoke the term “likelihood.” In fact, both methods employ the same likelihood function. The
likelihood  in  this  case  merely  characterizes  the  probability  of  observing  the  data,  given  a  set  of
parameters. The difference lies in how this likelihood is treated. For Bayesians, it forms one part of the
posterior distribution. Frequentists seek to find the that maximizes this function.

Comparative Characteristics of Bayesian Methods

The previous sections outlined the basic structures of the Bayesian and Frequentist frameworks and
how they compare to one another. Each paradigm has practical advantages and disadvantages when
compared  with  the  other.  Bayesian  methods  can  be  more  informative  on  small  samples.  Bayesian
analysis can also provide more theoretically pleasing estimation results.

Bayesian analysis can have some advantages where the data do not provide much information with
which to estimate parameters (namely due to the lack of prior information being included in frequentist
analysis). One instance of this is when examining data with small sample sizes. Xie et al. address the
small  sample  size  question  and  compare  the  results  from  the  Bayesian  analysis  to  a  frequentist
analysis.113

The authors performed their comparison in the context of an ordered probit model.114 The authors find
that when using the full sample of 76,994 observations, a Bayesian model with uninformative priors (i.e.,
p(θ) contains very little information and the data is relied upon to provide almost all of the information
about θ) is almost identical to the frequentist model. A variety of other priors were fit to the entire
sample and all models provided similar results to the frequentist model. The authors then examined the
models on a subsample of 100 records. A frequentist model and a Bayesian model with an informative
prior were fit to this small sample and compared to the full sample results. The Bayesian model with the
informative prior provided results that were significantly closer to those observed on the entire sample.

113 Xie, et al. (2009).

114 More information on ordered probit models is contained in Section 4.1.
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This  study  reveals  two  important  points  regarding  the  use  of  Bayesian  in  an  applied  sense.  First,
Bayesian  methods can provide  real  gains  when examining  small  samples.  While  this  may  not  be  a
relevant  advantage  given  the  current  objective  of  modeling  incursion  severity  across  the  many
thousands of  incursions-to-date,  further  rounds of  research may wish to  analyze small  subsamples.
Secondly, the advantages of Bayesian hinge upon the definition of the priors. Given an uninformative
prior, the Bayesian results mimicked the frequentist results. Thus, when examining runway incursion
severity, a relatively unexplored field with few prior beliefs about the impacts of variables, Bayesian
methods may not provide a substantial advantage.

In addition to the beneficial small sample properties, Bayesian analysis is more theoretically pleasing. As
an example, consider Griffiths et al; the authors compare Bayesian estimation with a variety of priors to
the standard frequentist estimation results in the context of a probit model of mortgage types. 115 In this
case, the researchers used a truncated uniform prior distribution. That is, the authors had the prior
belief that a coefficient is positive, and all positive values are equally likely. The mean and variance of
the posterior  distribution were similar  to the results  from the frequentist  estimation.  However,  the
Bayesian  results  were  truncated  at  zero,  whereas  the  frequentist  results  imply  a  distribution  that
normally  distributed around the  estimate,  regardless  of  where  it  falls.  For  a  variable  that  must  be
positive, this frequentist result may be incorrect. This may be especially true for variables with small
effects, that is, for variables with estimated effects that are not very different from zero. The Bayesian
estimates, by virtue of being truncated at zero, have a slightly different distribution – the mean and
variance may be similar, but impossible values will have zero probability. Figure 67 demonstrates this
graphically.

Figure 66 - Bayesian versus Frequentist Parameter Estimates

The  red  bar  (top)  displays  a  hypothetical  Bayesian  estimate.  The  width  of  the  bar  represents  the
distribution for the parameter estimated. Note that the bar is truncated at zero, indicating that the
distribution of   does not extend past  zero in that direction. The blue bar (bottom) represents the
variance around a frequentist point estimate,  .  The variance can extend outside of the reasonable
range for the parameter, in this case extending to negative values. Finally, note that the point estimate 
is equal to the mean of the distribution of  (represented by a vertical line in the bar). This need not be
the case in general.

This discrepancy – truncated versus unconstrained – extends to predicted probabilities, as well. The use
of a probit model confines the frequentist point estimate of the probability to be between zero and one.
However, there is some variance about that point which may include illegitimate values (probabilities
outside the zero to one range).116 The predicted probabilities obtained from the Bayesian estimation
were truncated at zero and one respectively, constraining results to be within the valid interval. Figure
68 provides a simplified graphical explanation of this phenomenon. Griffiths et al. note that this is not a

115 Griffiths, et al. (2006).
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result of using a truncated prior but rather to the differences in how estimations are generated for
Bayesian and frequentist methods.117

Figure 67 - Bayesian versus Frequentist Probability Estimates

The red bar (top) represents the probability estimate from a Bayesian estimation while the blue bar
(bottom) represents that from a frequentist.  The frequentist point estimate of the probability,  P f,  is
confined to be in the valid range of zero to one. However, the variance around this point (representing
uncertainty  of  the  estimate)  can  extend  into  unreasonable  ranges.  This  does  not  invalidate  the
frequentist  estimate, and is  merely an undesirable side effect  of the frequentist interpretation.  The
Bayesian probability estimate, Pb, is again a distribution. This distribution is truncated to remain in the
valid range of zero to one.

The  ability  to  confine  predicted  probabilities  to  the  appropriate  bounded interval  is  advantageous.
Additionally, if priors about the sign but not magnitude of a coefficient exist, Bayesian methods offer
superior estimation results. However, as noted earlier, few if any priors exist in the runway incursion
context.118 It  is  also  unclear  how useful  predicted  probabilities  may  be  in  this  context.  Regardless,
Bayesian methods will likely provide results that are theoretically superior compared to the frequentist
methods. The degree of superiority will however vary, and in some situations, can be quite small.

However, Bayesian methods are more difficult to implement than frequentist methods. First, inference
about the effects of individual components of θ is difficult using the posterior distribution, leading to
less clear policy direction. Further complicating matters is that p(θ|y) may not be written as a simple
formula (i.e., there is no closed form for p(θ|y)). In these cases, simulation is required to deduce p(θ|y),
requiring additional programming, computing resources, and time.

Comparative Characteristics of Frequentist Models

Frequentist methods often are at a disadvantage where Bayesian methods are advantageous, and vice
versa. Frequentist estimation, by relying solely on the data to produce results, is subject to the weakness

116 As an aside, it is important to compare this to the problems with OLS as mentioned above. OLS results are
unconstrained; when predicting a probability, OLS point estimates may be outside the range of zero to one. Here,
the point estimates produced by a probit model are constrained to the appropriate interval, but the uncertainty
surrounding that estimate may include unreasonable values. In some sense, constraining point estimates is an
improvement over the unbounded OLS estimates, even if the uncertainty may result in unwanted values for part of
the interval.

117 Griffiths, et al. (2006), p. 8.

118 The distinction is made here between hypotheses and priors. Hypotheses are statements that are to be tested.
There may be a multitude of hypotheses in the runway incursion context. Priors are beliefs that have influence
over the model estimation process, and are not testable in the same way that hypotheses are. Another take on this
distinction is that priors are assumed to be true in the absence of any data while hypotheses are intended to be
tested with data and proven true or false.
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in that data. However, frequentist methods do not require prior distributions on the parameters. This
has the advantage of not requiring the researcher to specify a prior distribution when no reasonable
prior  expectations  exist.  Additionally,  Bayesian  estimation  with  an  uninformative  prior  essentially
collapses  to  the frequentist  estimate.  That  is,  for  a  Bayesian without  any information from a prior
distribution,  only  information  in  the  data  can  be  used  to  estimate  a  result,  which  is  exactly  the
frequentist technique.

Frequentist  methods  also  have  advantages  in  terms  of  implementation.  Many  common  statistical
packages implement frequentist methods for the models under consideration. Though they may require
significant computing power, the requirements are substantially less than those required by Bayesian
methods with simulation.  The availability  of  “canned” implementations  of  frequentist  methods also
allows different model specifications to be tested quickly. Conversely, a significant portion of resources
would be dedicated to implementing Bayesian methods, restricting the focus to a single model with one
or two sets of explanatory variables that, given the lack of informative priors for runway incursions,
would likely return the same results as frequentist methods.

C.5.4. Conclusion

Both Bayesian and frequentist schools of thought have their merits. Frequentist methods result in point
estimates of parameters and are easily implemented. However, frequentist methods do not allow the
researcher to include any information that is not in the data, and may suffer from poor performance on
small samples. Bayesian methods result in a distribution of a parameter, have improved small sample
properties, and allow for the inclusion of additional information. Bayesian methods offer theoretical
improvements;  however,  without  strong  priors,  these  theoretical  improvements  are  mitigated.
Implementation  is  a  major  concern  for  Bayesian  methods,  likely  requiring  a  significant  resource
investment to get the estimation working properly. 

C.6. Extensions to the Multinomial Logit Model

The multinomial  probit  has been suggested as  an alternative  to  the multinomial  logit  specification,
primarily to avoid the unfavorable IIA property. However, due to the computational concerns regarding
the multinomial probit,  other alternatives have been developed. The two major developments have
been nested logit models and random parameter models.

Nested models are one way to address the IIA property of multinomial logits. Nested models achieve
this  by  grouping  the  choices  into  several  subsets  with  similar  unobserved  differences. 119 Thus,
unobserved differences are similar across groups but not between groups. This avoids the unwanted IIA
property introduced into the multinomial logit framework. It is important to note that the nesting is
merely a statistical  artifact  and does not imply  any sort  of  decision tree.120 The interpretation of  a
decision tree is  a behavioral  one imposed by the researcher,  but is  not reflected in the underlying

119 Washington, et al. (2011), p. 335.

120 Ibid., p. 338.
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statistics.  Nested  logit  models  are  useful  in  studying  mode  choice  as  it  can  account  for  similar
unobserved effects between choices (such as between busses and trains). 121 A nesting approach may be
useful  for  modeling runway incursion severity if  the different categories  have significantly  different
unobserved effects. For example, a nesting structure with two branches, one with C and D while the
other contained A and B, may be applicable.

Another alternative that attempts to relax the IIA assumption of the multinomial logit is the random
parameters model.122 Essentially, this model allows the parameters of the top-level model to vary in a
systematic  way.  That is,  a  model  of  mode choice could estimate a coefficient for mode price.  That
coefficient  could  then  be  allowed  to  vary  in  a  systematic  way  with  education,  income,  and  other
variables. This allows the model to be extremely flexible in terms of the correlation structure of the
random disturbance terms. However, this model can be difficult to implement. For a more complete
discussion, see Greene.123 Baht and Gossen provides an example of an implementation of this model.124

121 Forinash and Koppelman (1993).

122 Greene (2003), p. 728.

123 Ibid.

124 Bhat and Gossen (2004).
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APPENDIX D: FUTURE RESEARCH

 Understand the relationship between incident type (OE/PD/VPD) and severity

 Why departures/arrivals on intersecting runways are associated with more serious incursions

 Why departures/arrivals on intersecting runways are more likely to be OEs than PDs

 Use data on number of operations per controller or pilot to understand error rate

 Why LAHSO operations appear to have fewer than expected incursions despite being a riskier
operation

 Policy/training implications: why incidents during takeoff are more likely to be OEs than during
landing

 Why  commercial  carriers  are  involved  in  less  severe  incursions  despite  operating  in  more
complex conditions and locations

 How the impact of commercial carrier status varies with OE and PD incursions

 Cause for the lack of incursions among experienced pilots

 Policy implications: changes to training for experienced pilots or identification of poor quality
pilots early 

 Investigate the nature of the ordering (if any) of severity between C and D events.

 Models of incursion frequency (rather than severity)  may shed light on how other variables
impact safety

 Refine and clarify traffic complexity measures

 Better understand differences in controllers between OEP 35 and Non-OEP 35 airports

 Better understand differences relationship between LAHSO capability and incident type

 Understand the relationship between severity and LAHSO capability

 Cause or nature of the  relationship between who identifies an incident and severity

 Relationship between time on shift and frequency of incursions

 How changes to operations in adverse weather interact with changes in risk due to the weather

 Cause of increase in V/PDs in cold weather

 Relationship between higher dew points and OE events

 Potential relationship between dew point and conflict events

 Disentangle  effects  of  various  visibility-related  measurements  (i.e.,  visibility,  ceiling,  cloud
coverage)
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 Determine  if  snow removal  vehicles  are  in  more  severe  incidents  that  other  V/PDs  due  to
runway access alone

 Describe  the  relationship  between  nighttime  operations,  controller  actions,  and  incident
severity

 Understand the relationship between “good” weather, controller behavior, and severity

 Understand the relationship between high pressure, controller behavior, and severity

 Further  research  into  pilot  instrument  ratings  should  account  for  the  three  rating  groups
(current, past, and never rated) and further investigate whether current and past ratings have
the same impact on severity
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APPENDIX C: SUMMARY OF MODELING RESULTS

The following table summarizes the results presented in the body of the paper. Rows represent different
variables while the different columns represent the variety of tests and models detailed in the report.
The general direction of the effect is given. If the estimated relationship had a p-value less than 0.10, it
is reported as an X in the table, indicating it was included in the model or a test was performed, but it is
deemed insignificant. Empty cells represent that no test was run or that the variable was not included in
the model. Positive indicates that increasing values of the variable (or in the case of binary variables,
being coded as a yes) increase the severity of an incursion. Negative indicates that opposite – increasing
values decrease the severity of the incursion.

Variable

Chi2/Exact
or

Kruskal-
Wallis by
Severity

Simple
Logit:
Odds
Ratio

Ordered
Logit:

Coefficient

Binary
Logit:
Odds
Ratio

Multinomial
Logit

ARTS II X X X

ARTS III X X X

ASDE Related
Negativ

e
X X

Cloud Ceiling Related

Cloud Coverage Related Negative Negative

Cloud Coverage X Sea Level Positive X

Commercial Carrier X Negative Negative

Commercial Carrier , Conflict Only
Negativ

e

Controller Age X X X Unchanged

Controller Time on Shift X X X

A increases
B unchanged

C decreases
D unchanged

Controller Workload Related Positive X
A increases

B & C unchanged
D decreases

Daily Operations Related

Daily Operations (Aircraft Model) X X Unchanged

Daily Operations (Airport Model) Positive Positive

Daily Operations (Controller 
Model)

X Positive
A & B unchanged

C increases
D decreases

Daily Operations (Radar Model) Positive X A & B unchanged
C increases
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Variable

Chi2/Exact
or

Kruskal-
Wallis by
Severity

Simple
Logit:
Odds
Ratio

Ordered
Logit:

Coefficient

Binary
Logit:
Odds
Ratio

Multinomial
Logit

D decreases

Daily Operations (Weather Model) Positive X

Dew Point X

Differences of AC/AT and GA 
Percents

X X

A increases
B unchanged

C increases
D decreases

Employee Alerted to Incident By Related

Employee Alerted to Incident By 
Pilot, Conflict Only

Positive

Entered Runway Without 
Clearance

Related

Evasive Action Taken Related

Evasive Action Taken , A & B Only X

Foreign Aircraft or Pilot Related

Intersecting Runway Departure or 
Arrival

Related Positive

Land and Hold Short Capability at 
Airport

X

Landed/Departed on Closed 
Runway or Taxiway

Related

Landed/Departed without 
Clearance Communication

Related X

Landed/Departed without 
Clearance Communication , Conflict
Only

Related Positive

Night Related Positive

No Weather Phenomena Indicator Related X Negative

Number of Aircraft Involved X Positive Positive A & B increase
C decreases

Number of Hotspots Related Negative Negative

A unchanged
B decreases

C unchanged
D increases

Number of Runway Intersections Related Positive Positive
A & B increase

C decreases
D unchanged
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Variable

Chi2/Exact
or

Kruskal-
Wallis by
Severity

Simple
Logit:
Odds
Ratio

Ordered
Logit:

Coefficient

Binary
Logit:
Odds
Ratio

Multinomial
Logit

Number of Runways Related Negative Negative
A decreases

B & C unchanged
D increases

OEP 35 Airport Status Positive

OEP 35 Airport Status, Conflict 
Only

X

Part 139 Airport Status Related

Part 139 Airport Status, Conflict 
Only

X

Percent of Operations that are Air 
Carrier/Air Transport

Related X X Unchanged

Phase of Flight: Landing Positive X Positive

Phase of Flight: Takeoff Positive Positive Positive

Pilot Instrument Rating Related

Pilot Instrument Rating , Conflict 
Only

Related

Pilot Instrument Rating:  Rated, but
not Current

Negativ
e

Pilot Instrument Rating: Current 
Rating

Negativ
e

Pilot Lost X

Pilot Ratings Related

Sea Level Pressure Deviation X Negative Negative

Snow Removal Vehicle Involved X

Snow Removal Vehicle Involved, 
V/PD Only

Related

Special Procedures X

STARS Related
Negativ

e
Negative Negative

STARS & ASDE X Positive X

Taxiing Out for Departure Related

Temperature Related

Temperature-Dew Point Difference Related

Traffic Complexity Code Related

Training in Last Year X X X
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Variable

Chi2/Exact
or

Kruskal-
Wallis by
Severity

Simple
Logit:
Odds
Ratio

Ordered
Logit:

Coefficient

Binary
Logit:
Odds
Ratio

Multinomial
Logit

Visibility Related

Visual Meteorological Conditions
Negativ

e

Weather

Wind Speed Related X X
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